pure and applied geophysics

, Volume 135, Issue 4, pp 625–638 | Cite as

Ground variation of radon 222 for location of hidden structural features. Example of the south of France (Alpes Maritimes)

  • Serge Borchiellini
  • Michel Bernat
  • Robert Campredon
Article

Abstract

We report two examples from the south of the French Alps, showing that radon emanation monitored by alpha-sensitive film may be used to locate certain discrete structural features revealed in data collected by remote sensing from a satellite. The variations observed in our data, over a period of several months, are in accordance with atmospheric changes and might correlate with local seismic activity when the detectors are located directly above structural fractures and the magnitude of the seismic event is greater than 2.

Key words

Geochemistry radon 222 emanation faults seismic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alter, H. W., andPrice, P. B. (1972),Radon Detection Using Track Registration Material, U.S. Patent 3, 665, 194.Google Scholar
  2. Ambronn, R. (1921), Jahrbuch des Halleschen Verbandes für die Erforschung der Mitteldeutschen Bodenschätze3, 44 ff.Google Scholar
  3. Birchard, G. F., andLibby, W. F. (1976),An Inexpensive Radon Earthquake Prediction Concept (abstract), EOS Trans. AGU57, 957.Google Scholar
  4. Clement, W. E., andWilkening, M. H. (1974),Atmospheric Pressure Effects on Radon Transport Across the Earth-air Interface, J. Geophys. Res.79, 5025–5029.Google Scholar
  5. Dubar, M. (1987),Précision sur la structure et le fonctionnement récent du fossé tectonique du Var inférieur d'aprés l'étude des déformations des terrasses quaternaires, C. R. Acad. des Sciences,T 304, 141–146.Google Scholar
  6. Fleischer, R. L., Price, P. B., andWalker, R. M.,Nuclear Tracks in Solids, (Univ. of California Press, Berkeley, California 1975).Google Scholar
  7. Fleischer, R. L. (1980),Dislocation Model for Radon Response to Distant Earthquakes, Physical Chemistry Laboratory, 4 p. Corporte Research and Development, Schenectady, New York.Google Scholar
  8. Gabelman, J. W. (1972),Radon Emanometry of Starks Salt Dome, Calcasieu Parish, Lousiana, USAEC Report RME-4114, U.S. Atomic Energy Commission, GPO.Google Scholar
  9. Gingrich, J. E. (1984),Radon as a Geochemical Exploration Tool, J. Geochem. Explor.21, 13–39.Google Scholar
  10. Israel H., andBjørnsson S. (1967),Radon and Thoron in Soil Air over Faults, Zeitschrift für Geophysik33, 48–64.Google Scholar
  11. King, C. Y. (1978),Radon Emanation on San Andreas Fault, Nature271, 516–519.Google Scholar
  12. King, C. Y. (1979),Episodic Radon Changes in Subsurface Soil Gas along Active Faults and Possible Relation to Earthquakes, Report U.S. Geological Survey, 112–123.Google Scholar
  13. Klusman, R. W., andWebster, J. D. (1981),Meteorological Noise in Crustal Gas Emission and Relevance to Geochemical Exploration, J. Geochem. Explor.15, 61–86.Google Scholar
  14. Kovach, E. M. (1945),Meteorological Influences upon the Radon Content of Soil-gas, Trans. Amer. Geophys. Union26, 241–248.Google Scholar
  15. Kramer, H. W., Schroeder, G. L., andEvans, R. D.,Measurements of the effects of atmospheric variables on Rn-222 flux and soil-gas concentrations. InThe Natural Radiation Environment (Adams, J. A. ed.) (Univ. of Chicago, III 1964) pp. 191–215.Google Scholar
  16. Kristiansson, K., andMalmqvist, L. (1982),Evidence for Non-diffusive Transport of Radon 222 in Ground and a New Physical Model for the Transport, Geophysics47, 1444–1452.Google Scholar
  17. Kristiansson K., andMalmqvist, L. (1984),The Depth Dependence of the Concentration of Radon 222 in Soil Gas near the Surface and its Implication for Exploration, Geoexploration22, 17–41.Google Scholar
  18. Lanteaume, M., Gigot, P., andCampredon, R. (1982),Apports et limites de l'interprétation linéamentaire dans le domaine des Alpes Occidentales Méridionales, Bull. Soc. Geol. France1, 49–62.Google Scholar
  19. Meneroud, J. P., andPerez, J. L. (1984),Une approche de l'étude de la néotectonique par l'analyse de la microsismicité, Méditerranée 1–2, 123–130.Google Scholar
  20. Mogro-Campero, A., Fleischer, R. L., andLikes, R. S. (1980),Changes in Subsurface Radon Concentration Associated with Earthquakes, J. Geophys. Res.85, 3053–3088.Google Scholar
  21. Monnin, M. (1980),Visualization of Latent Damage Trails, Part I, Nucl. Inst. Meth.137, 1–14.Google Scholar
  22. Oddou, A. (1981),Mesure des variations de concentration du radon dans le sol, relations avec la tectonique active. Application aux Alpes-Maritimes, Thèse de 3° cycle, Université de Nice, 113 p.Google Scholar
  23. Pearson, J. E., andJones, E. J. (1965),Emanation of Radon-222 from Soils and its Use as a Tracer, J. Geophys. Res.70, 5279–5290.Google Scholar
  24. Pearson, J. E., andJones, E. J. (1966),Soil Concentration of “Emanating Radium-226” and the Emanation of Radon-222 from Soils and Plants, Tellus18, 655–662.Google Scholar
  25. Ricou, L. E. (1984),Les Alpes Occidentales: Chaine de Décrochement, Bull. Soc. Géol. FranceXXVI, 861–874.Google Scholar
  26. Schery, S. D., andGaeddert, D. H. (1982),Measurement of the Effect of Cyclic Atmospheric Pressure Variation on the Flux of Radon 222 from the Soil, Geophys. Res. Lett.9, 835–838.Google Scholar
  27. Seidel, J. L. (1982),Radon émanométrie appliquée à la géophysique interne, Thèse de 3° cycle, Université de Clermont-Ferrand, 81 pp.Google Scholar
  28. Talwani, P., Moore, W. S., andChiang, J. (1980),Radon Anomalies and Microearthquakes at Lake Jocassee, South Carolina, J. Geophys. Res.85, 3079–3088.Google Scholar
  29. Tanner, A. B.,Radon Migration in the ground: A supplementary review, InThe Natural Radiation Environment, vol. 1 (Gesell, T. F., and Lowder, W. M. eds.) (III. Symp. Proc. Houston, Texas 1980) pp. 5–56.Google Scholar
  30. Tidjani, A. (1984),Etudes de sondes pour l'analyse des processus géophysiques, radon-émanométrie, Thèse de 3° cycle, Université de Clermont-Ferrand, 95 pp.Google Scholar
  31. Tidjani, A., Monnin, M., andSeidel, J. L. (1990),Enhancement of Radon Signals in Geophysical Studies with the Track Technique, Pure Appl. Geophys.132, 1–10.Google Scholar
  32. Wakita, H. (1977),Geochemistry as a Tool for Earthquake Prediction, J. Phys. Earth5, 175–183.Google Scholar
  33. Wakita, H., Nakamura, Y., Kita, I., Fujii, N., andNotsu, K. (1980),Hydrogen Release: New Indicator of Fault Activity, Science210, 188–190.Google Scholar
  34. Wakita, H., Nakamura, Y., andSano, Y. (1985),Groundwater Radon Variations Reflecting Changes in Regional Stress Fields, Earth Predict. Res.3, 545–557.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • Serge Borchiellini
    • 1
  • Michel Bernat
    • 1
  • Robert Campredon
    • 2
  1. 1.Laboratoire de Géochimie (URA 132)Université de NiceNiceFrance
  2. 2.Institut de Géodynamique (URA 1279)Université de NiceNiceFrance

Personalised recommendations