Advertisement

Susceptibility-based MRI contrast of the CSF by intravascular superparamagnetic nanoparticles

  • O. Yu
  • I. J. Namer
  • J. Steibel
  • B. Eclancher
  • P. Poulet
  • J. Chambron
Papers

Abstract

Endorem®, a suspension of superparamagnetic iron oxide dextran nanoparticles (NP), have been injected intravenously to healthy anesthetized rats for the purpose of contrast enhancement of brain in gradient-echo imaging at 200 MHz. Not only gray and white matter but also particular regions of the cerebrospinal fluid (CSF) were contrasted in sagittal and transverse images, although samples of this fluid did not contain NP. The selected contrast in the CSF would result from the ability of dense vascular beds containing highly magnetized particles to induce a remote susceptibility effect far beyond the vascular walls into a large fraction of extravascular water.

Keywords

superparamagnetic nanoparticles CSF MR imaging susceptibility effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulte JW, de Jonge MWA, Kamman R, Zuiderveen F, The TH, de Leij L, Go KG (1993) Magnetite as a potent contrast-enhancing agent in magnetic resonance imaging to visualize blood-brain barrier disruption.Acta Neurochir 57(Suppl.): 30–34.Google Scholar
  2. 2.
    Knutzon RK, Poirier VC, Gerscovich EO, Brock JM, Buonocore M (1991) The effect of intravenous gadolinium on the magnetic resonance appearance of cerebrospinal fluid.Invest Radiol 26: 671–673.PubMedGoogle Scholar
  3. 3.
    Wan X, Fu TC, Smith PH, Brainard JR, London RE (1991) Magnetic resonance imaging study of the rat cerebral ventricular system utilizing intracerebrally administered contrast agents.Magn Reson Med 21: 97–106.PubMedGoogle Scholar
  4. 4.
    Wan X, Fu TC, Funk A, London RE (1995) Differential clearance of nitroxide MRI contrast agents from rat cerebral ventricles.Brain Res Bull 36: 91–96.PubMedGoogle Scholar
  5. 5.
    Sage MR, Wilson AJ (1994) The blood-brain barrier: an important concept in neuroimaging.AJNR Am J Neuroradiol 15: 601–622.PubMedGoogle Scholar
  6. 6.
    Kent TA, Quast MJ, Kaplan BJ, Lifsey RS, Eisenberg HM (1990) Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent.Magn Reson Med 13: 434–443.PubMedGoogle Scholar
  7. 7.
    Majumdar S, Zoghbi SS, Gore JC (1988) Regional difference in rat brain displayed by fast MRI with superparamagnetic contrast agents.Magn Reson Imaging 6: 611–615.PubMedGoogle Scholar
  8. 8.
    White DL, Aicher KP, Tzika AA, Kucharczyk J, Engelstad BL, Moseley ME (1992) Iron-dextran as a magnetic susceptibility contrast agent: flow-related contrast effects in the T2-weighted spin-echo MRI of normal rat and cat brain.Magn Reson Med 24: 14–28.PubMedGoogle Scholar
  9. 9.
    Josephon L, Bigler J, White D (1991) The magnetic properties of some materials affecting MR Images.Magn Reson Med 22: 204–208.PubMedGoogle Scholar
  10. 10.
    Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment.Magn Reson Med 31: 601–610.PubMedGoogle Scholar
  11. 11.
    Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects.Magn Reson Med 6: 164–174.PubMedGoogle Scholar
  12. 12.
    Bauer WR, Schulten K (1990) Theory of relaxation enhancement of intravascular NMR contrast agents by exchange of nuclear spins between intra- and extravascular space.Ninth Annual Meeting of Society of Magnetic Resonace in Medicine, Abstracts, Vol. 2, p. 760.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • O. Yu
    • 1
  • I. J. Namer
    • 1
  • J. Steibel
    • 1
  • B. Eclancher
    • 1
  • P. Poulet
    • 1
  • J. Chambron
    • 1
  1. 1.Faculté de MédecineInstitut de Physique Biologique (URA 1173 CNRS)StrasbourgFrance

Personalised recommendations