International Journal of Game Theory

, Volume 11, Issue 1, pp 1–12 | Cite as

Characterizing the Banzhaf and Shapley values assuming limited linearity

  • E. M. Bolger
Papers

Abstract

This paper presents characterizations of the Banzhaf-Coleman and Shapley-Shubik indices for monotonic simple games. The characterizations are obtained without explicitly requiring that the indices satisfy the linearity assumptionψ (v∧ w) +ψ (v ∨ w) =ψ (v) + ψ (w). The ideas developed are then used to obtain a characterization of the Banzhaf value for the class of alln-person games in characteristic function form.

Keywords

Characteristic Function Economic Theory Game Theory Function Form Simple Game 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banzhaf, J.R.: Weighted Voting Doesn't Work: A Mathematical Analysis. Rutgers Law Review19, 1965, 317–343.Google Scholar
  2. Bolger, E.M.: A Class of Power Indices for Voting Games. Int. Journal of Game Theory9, 1980, 217–232.Google Scholar
  3. Dubey, P.: Some Results on Values of Finite and Infinite Games. Ph. D. Thesis, Cornell University Ithaca, New York 1975.Google Scholar
  4. Dubey, P., A. Neyman, andR. Weber: Value Theory Without Efficiency. Math. of Operations Research6 (1), 1981, 122–128.Google Scholar
  5. Dubey, P., andL. Shapley: Mathematical Properties of the Banzhaf Power Index. Math. of Operations Research4, 1979, 99–131.Google Scholar
  6. Owen, G.: Characterization of the Banzhaf-Coleman Index. SIAM J. Applied Math.35 (2), 1978, 315–327.Google Scholar
  7. Shapley, L.S.: A Value forn-Person Games. Annals of Mathematics Study28. Ed. by A.W. Tucker et al. Princeton, N.J. 1953, 307–317.Google Scholar

Copyright information

© Physica-Verlag Ges.m.b.H 1982

Authors and Affiliations

  • E. M. Bolger
    • 1
  1. 1.Department of Mathematics and StatisticsMiami UniversityOxfordUSA

Personalised recommendations