Journal of Statistical Physics

, Volume 34, Issue 1–2, pp 329–343 | Cite as

Regression law and the renormalization of the transport coefficients

  • J. L. Del Rio
Articles

Abstract

Using Mazur's lemma we show that the coarse-grained variables used in nonequilibrium statistical mechanics are the Onsager's regression variables. With this result we find a regression law for the fluctuations which is both non-Markovian and nonlinear. Considering the Markovian approximation and generalizing Onsager's ideas leading to the symmetry of the transport matrix, we formulate Mori and Fujisaka's method for the renormalization of transport coefficients due to nonlinear interactions.

Key words

Coarse-grained variables Onsager's regression variables Mazur's lemma renormalization of the transport coefficients Mori-Fujisaka method projector operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Zwanzig, Proceedings of the Sixth IUPAP Conference on Statistical Mechanics (Univ. Chicago Press, Chicago, 1972), p. 241.Google Scholar
  2. 2.
    K. Kawasaki, inPhase Transitions and Critical Phenomena, M. S. Green and C. Domb, eds. (Academic Press, New York, 1976), Vol. 5A, p. 165.Google Scholar
  3. 3.
    H. Mori,Prog. Theor. Phys. 33:423 (1965).Google Scholar
  4. 4.
    H. Mori and H. Fujisaka,Prog. Theor. Phys. 79:764 (1973).Google Scholar
  5. 5.
    L. S. García-Colín and R. M. Velasco,Phys. Rev. A 12:646 (1975).Google Scholar
  6. 6.
    L. Onsager,Phys. Rev. 37:405 (1931);38:2265 (1931).Google Scholar
  7. 7.
    L. S. García-Colín and J. L. del Río,Physica 96A:606 (1979).Google Scholar
  8. 8.
    P. Mazur, inFundamental Problems in Statistical Mechanics, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1969), p. 203.Google Scholar
  9. 9.
    R. Zwanzig,Phys. Rev. 124:983 (1961).Google Scholar
  10. 10.
    L. S. García-Colín and J. L. del Río,J. Stat. Phys. 16:235 (1977).Google Scholar
  11. 11.
    R. L. Stratonovich,Topics in the Theory of Random Noise (Gordon and Breach, New York, 1963), Chap. 3.Google Scholar
  12. 12.
    M. S. Green,J. Chem. Phys. 20:1281 (1952);22:398 (1954).Google Scholar
  13. 13.
    R. Kubo, M. Yokota, and S. Nakajima,J. Phys. Soc. Jpn. (Tokyo) 12:1203 (1957).Google Scholar
  14. 14.
    H. Mori, H. Fujisaka, and H. Shigematsu,Prog. Theor. Phys. (Kyoto) 51:109 (1974).Google Scholar
  15. 15.
    J. L. Del Río and L. S. García-Colín,J. Stat. Phys. 19:109 (1978).Google Scholar
  16. 16.
    R. Zwanzig, K. S. J. Nordholm, and W. C. Mitchell,Phys. Rev. A 5:2680 (1972).Google Scholar
  17. 17.
    R. Zwanzig, Problems in Nonlinear Transport Theory, inSystems far from Equilibrium (Proceedings, Sitges (1980), L. Garrido, ed. (Springer-Verlag, Berlin, 1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • J. L. Del Rio
    • 1
    • 2
  1. 1.Department of PhysicsU.A.M.-IztapalapaMexico 13, D.F.
  2. 2.Escuela Superior de Física y Matemáticas del I.P.N.Zacatenco, México 14, D.F.

Personalised recommendations