Annali di Matematica Pura ed Applicata

, Volume 156, Issue 1, pp 253–263 | Cite as

L p -estimates for the solutions of second order elliptic equations

  • Franco Mandras
  • Giovanni Porru
Article

Summary

We investigate the homogeneous Dirichlet problem in H2,p for a second order elliptic partial differential equation in nondivergence form Lu=f in the case in which the leading coefficients of L belong to H1,n(Ω), Ω ⊂ Rn. We prove that if p belongs to a suitable neighbourhood of 2, then the above problem, has a unique solution u satisfying ∥D2u∥p⩽ C∥f∥p; furthermore, if f ε Hk,p, k=1,2, ..., and the coefficients of L satisfy some natural conditions, then the solution satisfies\(\left\| u \right\|_{H^{k + 2,p} } \leqslant C\left\| f \right\|_{H^{k,p} }\).

Keywords

Differential Equation Partial Differential Equation Natural Condition Unique Solution Elliptic Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon -A. Douglis -L. Nirenberg,Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math.,12 (1959), pp. 623–727.Google Scholar
  2. [2]
    S. Campanato,Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale, Ann. Sc. Norm. Sup. Pisa,21 (1967), pp. 701–707.Google Scholar
  3. [3]
    M. Chicco,Solvability of the Dirichlet problem in H 2,p(Ω) for a class of linear second order elliptic partial differential equations, Boll. UMI,4 (1971), pp. 374–387.Google Scholar
  4. [4]
    Fang-Hua Lin,Second derivative L p estimates for elliptic equations of nondivergent type, Proc. Am. Math. Soc.,96 (1986), pp. 447–451.Google Scholar
  5. [5]
    P. Manselli,A nonexistence and nonuniqueness example in Sobolev spaces for elliptic equations in nondivergence form, Boll. UMI,17-A (1980), pp. 302–306.Google Scholar
  6. [6]
    N. Meyers,An L p estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa,17 (1963), pp. 189–206.Google Scholar
  7. [7]
    C. Miranda,Alcune osservazioni sulla maggiorazione in L v delle soluzioni deboli delle equazioni ellittiche del secondo ordine, Ann. Mat. Pura e Appl.,61 (1963), pp. 151–169.Google Scholar
  8. [8]
    C. Miranda,Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui, Ann. Mat. Pura e Appl.,63 (1963), pp. 353–386.Google Scholar
  9. [9]
    C.Pucci,Equazioni ellittiche con soluzioni in W2,p,p < 2, Convegno sulle equazioni alle derivate parziali, Bologna (1967), pp. 145–148.Google Scholar
  10. [10]
    C. Pucci,Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura e Appl.,74 (1966), pp. 15–30.Google Scholar
  11. [11]
    J. Serrin,Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Sup. Pisa,18 (1964), pp. 385–387.Google Scholar
  12. [12]
    G. Talenti,Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura e Appl.,69 (1965), pp. 285–304.Google Scholar
  13. [13]
    G. M. Troianiello,Elliptic differential equations and obstacle problems, The Univ. Series in Math., J. J. Kohn, Plenum Press, New York and London (1987).Google Scholar
  14. [14]
    M. Venturino,Sull'appartenenza ad H3(Ω)delle soluzioni di una classe di equazioni ellittiche a coefficienti discontinui, Analisi funzionale e applicazioni, Suppl. B.U.M.I., Vol. I (1980), 197–218.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1990

Authors and Affiliations

  • Franco Mandras
    • 1
  • Giovanni Porru
    • 1
  1. 1.Dipartimento di MatematicaCagliariItaly

Personalised recommendations