Annali di Matematica Pura ed Applicata

, Volume 139, Issue 1, pp 191–225 | Cite as

Rappresentazione con integrali multipli di funzionali dipendenti da funzioni a valori in uno spazio di Banach

  • Gianfranco Bottaro
  • Pirro Oppezzi


We consider a functional J: W 10c 1,p (Ω, X) ×B(Ω) → [0, ∞], where X is a Banach space andB(Ω) the class of the Borel subsets of the open Ω ⊂ Rn, and we assume that J has a suitable semicontinuity property respect its first variable, and depends like a measure from the elements ofB(Ω). We show that under certain conditions such a functional can be represented like a multiple integral of a Caratheodory integrand. The first paragraph is devoted to improve some classical results about Sobolev spaces W1,p(Ω, R) in the case of W1,p(Ω, X).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AF]
    E. Acerbi -N. Fusgo,Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal.,86 (1984), pp. 125–145.Google Scholar
  2. [A]
    R. A. Adams,Sobolev spaces, Academic Press, New York, 1975.Google Scholar
  3. [BDM 1]
    G. Buttazzo -G. Dal Maso,Γ-limits of integral functionals, J. Analyse Math.,37 (1980), pp. 145–185.Google Scholar
  4. [BDM 2]
    G.Buttazzo - G.Dal Maso,Integral representation and relaxation of local functionals (di prossima pubblicazione su Nonlinear Anal.).Google Scholar
  5. [BL]
    H. Berliocchi -J. M. Lasry,Integrandes normales et mesures paramétrées en calcul des variations, Bull. Soc. Math. France,101 (1973), pp. 129–184.Google Scholar
  6. [BO]
    G. P. Bottaro -P. Oppezzi,Semicontinuità inferiore di un funzionale integrale dipendente da funzioni a valori in uno spazio di Banach, Boll. Un. Mat. Ital., (5)17-B (1980), pp. 1290–1307.Google Scholar
  7. [CV]
    C. Castaing -M. Valadier,Convex Analysis and measurable Multifunctions, Lecture Notes N. 680, Springer-Verlag, Berlin, 1977.Google Scholar
  8. [DMM]
    G.Dal Maso - L.Modica,A general theory of variational functionals, Quaderno Scuola Norm. Sup. Pisa, «Topics in Functional Analysis 1980–81», Pisa, (1982), pp. 149–221.Google Scholar
  9. [DGF]
    E. De Giorgi -T. Franzoni,Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia,3 (1979), pp. 63–101.Google Scholar
  10. [DGL]
    E. De Giorgi -G. Letta,Une notion générale de convergence faible pour des fonctions croissantes d'ensemble, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4)4 (1977), pp. 61–90.Google Scholar
  11. [DS]
    N. Dunford -J. T. Schwartz,Linear Operators (part I), Interscience Publishers Inc., New York, 1958.Google Scholar
  12. [H]
    P. Halmos,Measure Theory, D. Van Nostrand Company Inc., New York, 1950.Google Scholar
  13. [K]
    J. L. Kellet,General Topology, Springer-Verlag, Berlin, 1965.Google Scholar
  14. [M]
    C. B. Morrey Jr.,Multiple Integrals in the calculus of Variations, Springer-Verlag, Berlin, 1966.Google Scholar
  15. [N]
    J. Nečas,Les méthodes directes en théorie des équations elliptiques, Masson, Paris et Academia Prague, 1967.Google Scholar
  16. [O]
    P. Oppezzi,Convessità della integranda in un funzionale del calcolo delle variazioni, Boll. Un. Mat. Ital., (6)1B (1982), pp. 763–776.Google Scholar
  17. [Ro]
    R. T.Rockafellar,Integral Functionals, Normal Integrand and measurable selections, in « Non linear Operators and the Calculus of Variations », Waelbroeck ed., Springer-Verlag, Series Lecture Notes in Math., (1976).Google Scholar
  18. [Ru]
    W. Rudin,Real and Complex Analysis, McGraw-Hill, London, 1970.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1985

Authors and Affiliations

  • Gianfranco Bottaro
  • Pirro Oppezzi
    • 1
  1. 1.Genova

Personalised recommendations