Advertisement

Annali di Matematica Pura ed Applicata

, Volume 142, Issue 1, pp 197–213 | Cite as

Global Lipschitz continuity of free boundaries in the one-phase Stefan problem

  • Chen Ya-zhe
Article

Summary

It is proved that the free boundary t=s(x)in the one-phase Stefan problem is uniformly Lipschitz continuous in the strip 0⩽tT for any T>0with a Lipschitz coefficient depending only on the specified data under some conditions.

Keywords

Free Boundary Lipschitz Continuity Stefan Problem Lipschitz Coefficient Global Lipschitz Continuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    G. Duvaut,Résolution d'un problème de Stefan (Fusion d'un bloc de glace à zero degreé), C. E. Acad. Sci. Paris,276 (1973), pp. 1461–1463.Google Scholar
  2. [2]
    A. Friedman -D. Kinderlehrer,A one-phase Stefan problem, Indiana Univ. Math. J.,24 (1975), pp. 1005–1035.Google Scholar
  3. [3]
    L. A. Caffarelli,The regularity of free boundaries in high dimensions, Acta Math.,139 (1978), pp. 155–184.Google Scholar
  4. [4]
    L. A. Caffarelli,Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J.,27 (1978), pp. 73–77.Google Scholar
  5. [5]
    L. A. Caffarelli -A. Friedman,Continuity of the temperature in the Stefan problem, Indiana Univ. Math. J.,28 (1979), pp. 53–70.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1985

Authors and Affiliations

  • Chen Ya-zhe
    • 1
  1. 1.Department of MathematicsPeking UniyersityBeijingChina

Personalised recommendations