Journal of Muscle Research & Cell Motility

, Volume 13, Issue 3, pp 272–284 | Cite as

Tightly-bound divalent cation of actin

  • James E. Estes
  • Lynn A. Selden
  • Henry J. Kinosian
  • Lewis C. Gershman


Actin is known to undergo reversible monomer-polymer transitions that coincide with various cell activities such as cell shape changes, locomotion, endocytosis and exocytosis. This dynamic state of actin filament self-assembly and disassembly is thought to be regulated by the properties of the monomeric actin molecule andin vivo by the influence of actin-associated proteins. Of major importance to the properties of the monomeric actin molecule are the presence of one tightly-bound ATP and one tighly-bound divalent cation per molecule.In vivo the divalent cation is thought to be Mg2+ (Mg-actin) butin vitro standard purification procedures result in the preparation of Ca-actin. The affinity of actin for a divalent cation at the tight binding site is in the nanomolar range, much higher than earlier thought. The binding kinetics of Mg2+ and Ca2+ at the high affinity site on actin are considered in terms of a simple competitive binding mechanism. This model adequately describes the published observations regarding divalent cation exchange on actin. The effects of the tightly-bound cation, Mg2+ or Ca2+, on nucleotide binding and exchange on actin, actin ATP hydrolysis activity and nucleation and polymerization of actin are discussed. From the characteristics that are reviewed, it is apparent that the nature of the bound divalent cation has a significant effect on the properties of actin.


Actin Filament Divalent Cation Shape Change Hydrolysis Activity Purification Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



N-iodoacetyl-N′-(5-sulpho-1 -naphthyl)ethylenediamine

Quin 2

2-[(2-bis-[carboxymethyl]amino-5-methylphenoxyl) methyl]-6-methoxy-8-bis[carboxymethyl] aminoquinoline


1,2-bis(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid




divalent cation-free actin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asakura, A. (1961) The interaction between G-actin and ATP.Arch. Biochem. Biophys. 92, 140–49.PubMedGoogle Scholar
  2. Barany, M., Finkelman, F. &Therattil-Antony T. (1962) Studies on the bound calcium of actin.Arch. Biochem. Biophys. 98, 28–45.Google Scholar
  3. Barden, J. A. &Dos Remedios, C. G. (1984) The environment of the high affinity binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy.J. Biochem 91, 913–21.Google Scholar
  4. Barden, J. A. &Dos Remedios, C. G. (1987) Fluorescence resonance energy transfer between sites in G-actin.Eur. J. Biochem. 168, 103–9.PubMedGoogle Scholar
  5. Brauer, M. &Sykes, B. D. (1982) Effects of manganous ions on the phosphorus-31 nuclear magnetic resonance spectrum of adenosine triphosphate bound to nitrated actin.Biochemistry 21, 5934–9.PubMedGoogle Scholar
  6. Brenner, S. L. &Korn, E. D. (1980) The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization.J. Biol. Chem. 255, 841–4.PubMedGoogle Scholar
  7. Brenner, S. L. &Korn, E. D. (1981) Stimulation of actin ATPase activity by cytochalasins provide evidence for a new species of monomeric actin.J. Biol. Chem. 256, 8663–70.PubMedGoogle Scholar
  8. Brenner, S. L., Tobacman S. &Korn E. D. (1983) The kinetics of actin polymerization and monomer-polymer exchange at steady-state. InActin: Structure and Function in Muscle and Non-Muscle Cells (edited by dos Remedios, C. G. & Barden, J.) pp. 97–106. Sydney: Academic Press.Google Scholar
  9. Campbell, A. K. (1983)Intracellular Calcium, p. 91. Chichester: John Wiley.Google Scholar
  10. Carlier, M-F. (1990) Actin polymerization and ATP hydrolysis.Adv. Biophys. 26, 51–73.PubMedGoogle Scholar
  11. Carlier, M-F. (1991) Actin: protein structure and filament dynamics.J. Biol. Chem. 266, 1–4.PubMedGoogle Scholar
  12. Carlier, M-F., Pantaloni, D. &Korn, E. D. (1984) Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state.J. Biol. Chem. 259, 9983–61.PubMedGoogle Scholar
  13. Carlier, M-F., Pantaloni, D. &Korn, E. D. (1986a) Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin.J. Biol. Chem. 261, 10778–84.PubMedGoogle Scholar
  14. Carlier M-F., Pantaloni, D. &Korn, E. D. (1986b) The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis.J. Biol. Chem. 261, 10785–92.PubMedGoogle Scholar
  15. Carlier, M-F., Pantaloni, D. &Korn, E. D. (1987) The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin.J. Biol. Chem. 262, 3052–9.PubMedGoogle Scholar
  16. Chrambach, A., Barany, M. &Finkelman, F. (1961) The bound calcium of actin.Arch. Biochem. Biophys. 98, 28–45.Google Scholar
  17. Cooper, J. A., Buhle, E. J., Walker, S. B., Tsong, T. Y. &Pollard, T. D. (1983) Kinetic evidence for a monomer activation step in actin polymerization.Biochemistry 22, 2193–202.PubMedGoogle Scholar
  18. Cotton, F. A. &Wilkinson G. (1966)Advanced Inorganic Chemistry, 2nd edn, pp. 163–6. New York: Interscience Publishers.Google Scholar
  19. Diebler, H. Eigen, M., Ilgenfritz, G., Maas, G. &Winkler, R. (1969) Kinetics and mechanism of reaction of main group metal ions with biological carriers.Pure Appl. Chem. 20, 93–115.Google Scholar
  20. Dos Remedios, C. G., Miki, M. &Barden, J. A. (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation.J. Muscle Res. Cell Motil. 8, 97–117.PubMedGoogle Scholar
  21. Drabikowski, W. &Strzelecka-Golaszewska H. (1963) The exchange of actin-bound calcium with various bivalent cations.Biochim. Biophys. Acta 71, 486–7.Google Scholar
  22. Drenckhahn, D. &Pollard, T. D. (1986) Elongation of actin filaments is a diffusion-limited reaction at the barbed end and is accelerated by inert macro molecules.J. Biol. Chem. 261, 12754–8.PubMedGoogle Scholar
  23. Engel, J., Fasold, H., Hulla, F. W., Waechter, F. &Wegner, A. (1977) The polymerization reaction of muscle actin.Mol. Cell. Biochem. 18, 3–13.PubMedGoogle Scholar
  24. Estes, J. E., Selden, L. A. &Gershman, L. C. (1987) Tight binding of divalent cations to monomeric actin. Binding kinetics support a simplified model.J. Biol. Chem. 262, 4952–7.PubMedGoogle Scholar
  25. Feuer, G., Molnar, F., Pettko, E. &Straub, F. B. (1948) Studies on the composition and polymerization of actin.Acta Physiol. 1, 150.Google Scholar
  26. Frieden, C. (1982) The Mg-induced conformational change in rabbit skeletal muscle G-actin.J. Biol. Chem. 257, 2882–6.PubMedGoogle Scholar
  27. Frieden, C., Lieberman, D. &Gilbert, H. R. (1980) A fluorescent probe for conformational changes in skeletal muscle actin.J. Biol. Chem. 255, 8991–3.PubMedGoogle Scholar
  28. Gershman, L. C., Selden, L. A., Estes, J. E. &Newman, J. (1983) Evidence for a monomer activation step in actin polymerization.Biophys. J. 41, 45a.Google Scholar
  29. Gershman, L. C., Newman, J., Selden, L. A. &Estes, J. E. (1984) Bound cation exchange affects the lag phase in actin polymerization.Biochemistry 23, 2199–203.PubMedGoogle Scholar
  30. Gershman, L. C., Selden, L. A. &Estes, J. E. (1986) High affinity binding of divalent cation to actin is much stronger than previously reported.Biochem. Biophys. Res. Comm. 135, 607–14.PubMedGoogle Scholar
  31. Gershman, L. C., Estes, J. E. &Selden, L. A. (1988a) Polymerization characteristics of divalent cation-free actin.Ann. N.Y. Acad. Sci. 529, 264–7.Google Scholar
  32. Gershman, L. C., Selden, L. A., Kinosian, H. J. &Estes, J. E. (1988b) Divalent cation exchange on actin.Biophys. J. 53, 573a.Google Scholar
  33. Gershman, L. C., Selden, L. A., Kinosian, H. J. &Estes, J. E. (1989) Preparation and polymerization properties of monomeric ADP-actin.Biochim. Biophys. Acta 995, 109–15.PubMedGoogle Scholar
  34. Gershman, L. C., Selden, L. A. &Estes, J. E. (1990) Nucleotide binding to actin is regulated by cation binding at the high affinity site.Tenth International Biophysics Congress, Vancouver, Canada.Google Scholar
  35. Gershman, L. C., Selden, L. A., Kinosian, H. J. &Estes, J. E. (1991a) High affinity divalent cation exchange on actin: association rate measurements support the simple competitive model.J. Biol. Chem. 266, 76–82.PubMedGoogle Scholar
  36. Gershman, L. C., Selden, L. A. &Estes, J. E. (1991b) Cation binding to the high affinity site regulates nucleotide binding to actin.Biophys. J. 59, 53a.Google Scholar
  37. Gilbert, H. &Frieden, C. (1983) Preparation, purification and properties of a crosslinked trimer of G-actin.Biochem. Biophys. Res. Comm. 111, 404–8.PubMedGoogle Scholar
  38. Goddette, D. W., Uberbacher, E. C., Bunick, G. J. &Frieden, C. (1986) Formation of actin dimers as studied by small angle neutron scattering.J. Biol. Chem. 261, 2605–9.PubMedGoogle Scholar
  39. Gordon, D. J., Yang, Y-Z. &Korn, E. D. (1976) Polymerization ofAcanthamoeba actin.J. Biol. Chem. 251, 7474–9.PubMedGoogle Scholar
  40. Grubhofer, N. &Weber, H. H. (1961) Uber Actin-Nucleotide und die Funktion und Bindung der Nucleotidphosphate im G- und F-actin. Z.Naturforsch 16b, 435–444.Google Scholar
  41. Haiech, J., Derancourt, J., Perchere, J-F. &Demaille, J. (1979) Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function.Biochemistry 18, 2752–8.PubMedGoogle Scholar
  42. Hambly, B. D., Barden, J. A., Miki, M. &Dos Remedios, C. G. (1986) Structure and functional domains on actin.Bioessays 4, 124–8.PubMedGoogle Scholar
  43. Hasselbach, W. (1957) Die bindung von Adenosindiphosphate, von Anorganischen Phosphate und von Erdalkalien an die Struckturproteine des Muskels.Biochim. Biophys. Acta 25, 562–74.PubMedGoogle Scholar
  44. Hegyi, G., Szilagyi, L. &Belagyi, J. (1988) Influence of the bound nucleotide on the molecular dynamics of actin.Eur. J. Biochem. 175, 271–4.PubMedGoogle Scholar
  45. Higashi, S. &Oosawa, F. (1965) Conformational changes associated with polymerization and nucleotide binding in actin molecules.J. Mol. Biol. 12, 843–65.PubMedGoogle Scholar
  46. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. &Holmes, K. C. (1990) Atomic structure of the actin: DNase I complex.Nature 347, 37–44.PubMedGoogle Scholar
  47. Kasai, M. (1969) Thermodynamical aspect of G-F transformation of actin.Biochim. Biophys. Acta 180, 399–409.PubMedGoogle Scholar
  48. Kasai, M. &Oosawa, F. (1968) The exchangeability of actin-bound calcium with various divalent cations.Biochim. Biphys. Acta 154, 520–8.Google Scholar
  49. Kasai, M. &Oosawa, F. (1969) Behavior of divalent cations and nucleotides bound to F-actin.Biochim. Biophys. Acta 172, 300–10.PubMedGoogle Scholar
  50. Kasai, M., Asakura S. &Oosawa, F. (1962) The cooperative nature of G-F transformation of actin.Biochim. Biophys. Acta 57, 22–31.PubMedGoogle Scholar
  51. Kasai, M., Nakano, E. &Oosawa, F. (1965) Polymerization of actin free from nucleotides and divalent cations.Biochim. Biophys. Acta 94, 494–503.PubMedGoogle Scholar
  52. Keiser, T., Schiller, A. &Wegner, A. (1986) Non-linear increase in elongation rate of actin filaments with actin monomer concentration.Biochemistry 25, 4899–906.PubMedGoogle Scholar
  53. Kinosian, H. J., Selden, L. A., Estes, J. E. &Gershman, L. C. (1991) Thermodynamics of actin polymerization: influence of the tightly-bound cation.Biochim. Biophys. Acta 1077, 151–8.PubMedGoogle Scholar
  54. Kitazawa, T., Shuman, H. &Somlyo, A. (1982) Calcium and magnesium binding to thin and thick filaments in skinned muscle fibers: electron probe analysis.J. Muscle Res. Cell Motil. 3, 437–54.PubMedGoogle Scholar
  55. Konno, K. &Morales, M. F. (1985) Exposure of actin thiols by the removal of tightly held calcium ions.Proc. Natl. Acad. Sci. USA 82, 7904–8.PubMedGoogle Scholar
  56. Kopp, S. J., Barron, J. T. &Tow, J. P. (1990) Phosphate metabolites, intracellular pH and free [Mg2+] in single, intact carotid artery segments studied by31P-NMR.Biochim. Biophys. Acta 1055, 27–35.PubMedGoogle Scholar
  57. Korn, E. D., Carlier, M-F. &Pantaloni, D. (1987) Actin polymerization and ATP hydrolysis.Science 238, 638–44.PubMedGoogle Scholar
  58. Kuehl, W. M. &Gergely, J. (1969) The kinetics of exchange of adenosine triphosphate and calcium with G-actin.J. Biol. Chem. 244, 4720–9.PubMedGoogle Scholar
  59. Kushmerick, M. J., Dillon, P. F., Meyers, R. A., Brown, T. R., Krisanda, J. M. &Sweeney, H. L. (1986)131P-NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle.J. Biol. Chem. 261, 14420–9.PubMedGoogle Scholar
  60. Lal, A. A., Brenner, S. L. &Korn, E. D. (1984) Preparation and polymerization of skeletal muscle ADP-actin.J. Biol. Chem. 259, 13061–5.PubMedGoogle Scholar
  61. Laki, K. &Clark, A. M. (1951) On the nucleotide content of actin preparations.J. Biol. Chem. 191, 599–606.PubMedGoogle Scholar
  62. Laki, K., Bowen, W. J. &Clark, A. (1950) The polymerization of proteins.J. Gen. Physiol. 33, 437–43.PubMedGoogle Scholar
  63. Loscalzo, J. &Reed, G. A. (1976) Spectroscopic studies of actinmetal nucleotide complexes.Biochemistry 15, 5407–13.PubMedGoogle Scholar
  64. Martonosi, A. &Gouvea, M. A. (1961) Studies on actin. IV The interaction of nucleoside triphosphates with actin.J. Biol. Chem. 236, 1345–52.PubMedGoogle Scholar
  65. Martonosi, A., Gouvea, M. A. &Gergely, J. (1960) Studies on actin. I. The interaction of C14-labelIed adenine nucleotide with actin.J. Biol. Chem. 235, 1700–3.PubMedGoogle Scholar
  66. Martonosi, A., Molino, C. M. &Gergely, J. (1964) The binding of divalent cations to actin.J. Biol. Chem. 239, 1057–64.PubMedGoogle Scholar
  67. Maruyama, K. (1981) Effects of trace amounts of Ca2+ and Mg2+ on the polymerization of actin.Biochim. Biophys. Acta 667, 139–42.PubMedGoogle Scholar
  68. Maruyama, K. &Gergely, J. (1961) Removal of the bound calcium of G-actin by ethylenediaminetetraacetate (EDTA).Biochem. Biophys. Res. Comm. 6, 245–9.PubMedGoogle Scholar
  69. Maruyama, K. &Martonosi, A. (1961) Protective action of nucleoside triphosphates against the inactivation of G-actin by ethylenediaminetetraacetate.Biochem. Biophys. Res. Comm. 5, 85–7.PubMedGoogle Scholar
  70. Matsudaira, P., Bordas, J. &Koch, M. H. J. (1987) Synchrotron X-ray diffraction studies of actin structure during polymerization.Proc. Natl. Acad. Sci. (USA) 84, 3151–5.Google Scholar
  71. Mejean, C., Hue, H. K., Pons, F., Roustan, C. &Benyamin, Y. (1988) Cation binding sites on actin: a structural relationship between antigenic epitopes and cation exchange.Biochem. Biophys. Res. Comm. 152, 365–75.Google Scholar
  72. Mihashi, K. &Ooi, T. (1965) Effects of divalent cations and ethanol on actin. InMolecular Biology of Muscular Contraction (edited by Ebashi, S., Oosawa F., Sekine, T. & Tonomura, Y.) pp. 77–89. Tokyo: Igaku Shoin.Google Scholar
  73. Miki, M. &Wahl, P. (1985) Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys 373 residue.Biochim. Biophys. Acta 828, 188–95.PubMedGoogle Scholar
  74. Millonig, R., Salvo, H. &Aebi, U. (1985) Probing actin polymerization by intermolecular cross-linking.J. Cell. Biol. 106, 785–96.Google Scholar
  75. Mockrin, S. C. &Korn, E. D. (1983) Kinetics of polymerization and ATP hydrolysis by covalently crosslinked actin dimer.J. Biol. Chem. 258, 3215–21.PubMedGoogle Scholar
  76. Moeschler, H. J., Schaer, J-J. &Cox, J. A. (1980) A thermodynamic analysis of the binding of calcium and magnesium ions to parvalbumin.Eur. J. Biochem. 111, 73–8.PubMedGoogle Scholar
  77. Mommaerts, W. F. H. M. (1951) Reversible polymerization and ultracentrifugal purification of actin.J. Biol. Chem. 188, 559–65.PubMedGoogle Scholar
  78. Mommaerts, W. F. H. M. (1952) The molecular transformations of actin. I. Globular actin.J. Biol. Chem. 198, 445–57.PubMedGoogle Scholar
  79. Mozo-Villarias, A. &Ware, B. R. (1985) Actin oligomers below the critical concentration detected by fluorescence photobleaching recovery.Biochemistry 24, 1544–8.Google Scholar
  80. Neidl, C. &Engel, J. (1979) Exchange of ADP, ATP and 1:N6-ethenoadenosine-5′-triphosphate at G-actin.Eur. J. Biochem. 101, 163–9.PubMedGoogle Scholar
  81. Newman, J., Estes, J. E., Selden, L. A. &Gershman, L. C. (1985) Presence of oligomers at subcritical actin concentrations.Biochemistry 24, 1538–44.Google Scholar
  82. Nowak, E., Strzelecka-Golaszewska, H. &Goody, R. (1988) Kinetics of nucleotide and metal ion interaction with G-actin.Biochemistry 27, 1785–92.PubMedGoogle Scholar
  83. Oosawa, F. (1983) Macromolecular assembly of actin. InMuscle and Non-Muscle Motility (edited by Stracher, A.) pp. 151–216. New York: Academic Press.Google Scholar
  84. Oosawa, F. &Asakura, S. (1975)Thermodynamics of the Polymerization of Protein. New York: Academic Press.Google Scholar
  85. Oosawa, F., Asakura, S., Asai, H., Kasai, M., Kobayashi, S., Mihashi, K., Ooi, T., Tanaguchi, M. &Nakano, E. (1964) Structure and function of actin polymers. InBiochemistry of Muscle Contraction (edited by Gergely, J.) pp. 158–72. Boston: Little, Brown.Google Scholar
  86. Pantaloni, D., Carlier, M-F. &Korn, E. D. (1985a) The interaction between ATP-actin and ADP-actin.J. Biol. Chem. 266, 6572–8.Google Scholar
  87. Pantaloni, D., Hill, T. L., Carlier, M-F. &Korn, E. D. (1985b) A model for actin polymerization and the kinetic effects of ATP hydrolysis.Proc. Natl. Acad. Sci 82, 7207–11.PubMedGoogle Scholar
  88. Pardee, J. D. &Spudich, J. A. (1982) Mechanism of K+-induced actin assembly.J. Cell Biol. 98, 648–54.Google Scholar
  89. Pollard, T. D. (1986) Rate constant for the reactions of ATP-and ADP-actin with the ends of actin filaments.J. Cell Biol. 103, 2747–54.PubMedGoogle Scholar
  90. Pollard, T. D. (1990) Actin.Curr. Opin. Cell Biol. 2, 33–40.PubMedGoogle Scholar
  91. Pollard, T. D. &Weeds, A. G. (1984) The rate constant for ATP hydrolysis by polymerized actin.FEBS Lett. 190, 94–8.Google Scholar
  92. Pollard, T. D., Aebi, U., Cooper, J. A., Fowler, W. E., Kiehart, D. P., Smith, P. R. &Tseng, P. C. (1982) Actin and myosin function inAcanthamoeba.Phil. Trans. R. Soc, London Series B 299, 237–45.Google Scholar
  93. Polzar, B., Nowak, E., Goody, R. S. &Mannherz, H. G. (1989) The complex of actin and deoxyribonuclease I as a model system to study the interactions of nucleotides, cations and cytochalasin D with monomeric actin.Eur. J. Biochem. 182, 267–75.PubMedGoogle Scholar
  94. Potter, J. D. &Johnson, J. D. (1982) Troponin. InCalcium and Cell Function (edited by Cheung, W. Y.) Vol II, pp. 145–73. New York: Academic Press.Google Scholar
  95. Roustan, C., Benyamin, Y., Boyer, M., Bertrand, M., Audemard, E. &Jauregui-Adell, J. (1985) Conformational changes induced by Mg2+ on actin monomers.FEBS Lett. 181, 119–23.PubMedGoogle Scholar
  96. Selden, L. A., Estes, J. E. &Gershman, L. C. (1983) The tightly bound divalent cation regulates actin polymerization.Biochem. Biophys. Res. Comm. 116, 478–85.PubMedGoogle Scholar
  97. Selden, L. A., Gershman, L. C. &Estes, J. E. (1986) Kinetic comparison between Mg-actin and Ca-actin.J. Muscle Res. Cell Motil. 7, 215–24.PubMedGoogle Scholar
  98. Selden, L. A., Gershman, L. C., Kinosian, H. J. &Estes, J. E. (1987) Conversion of ATP-actin to ADP-actin reverses the affinity of monomeric actin for Ca2+ vs. Mg2+.FEBS Lett. 217, 89–93.PubMedGoogle Scholar
  99. Selden, L. A. Estes, J. E. &Gershman, L. C. (1989) High affinity divalent cation binding to actin.J. Biol. Chem. 264, 9271–7.PubMedGoogle Scholar
  100. Selden, L. A., Gershman, L. C., Kinosian, H. J. &Estes, J. E. (1990) Mg++ bound at the high affinity site on actin is a cofactor for actin ATPase activity.Biophys. J. 57, 325a.Google Scholar
  101. Selden, L. A., Kinosian, H. J., Gershman, L. C. &Estes, J. E. (1991) Cytochalasin D activation of Mg-ATP-actin ATPase activity.Biophys. J. 59, 53a.Google Scholar
  102. Straub, F. B. &Feuer, G. (1950) Adenosinetriphosphate functional group of actin.Biochim. Biophys. Acta 4, 455–70.Google Scholar
  103. Strohman, R. C. &Samorodin, A. J. (1962) The requirements for adenosine triphosphate binding to globular actin.J. Biol. Chem. 237, 363–9.PubMedGoogle Scholar
  104. Strzelecka-Golaszewska, H. (1973) Relative affinities of divalent cations to the site of the tight calcium binding in G-actin.Biochim. Biophys. Acta 370, 60–9.Google Scholar
  105. Strzelecka-Golaszewska, H. &Drabikowski, W. (1968) Studies on the exchange of G-actin-bound calcium with bivalent cations.Biochim. Biophys. Acta 162, 518–95.PubMedGoogle Scholar
  106. Strzelecka-Golaszewska, H. &Drabikowski, W. (1978) Interaction of actin with divalent cations. 2. Characterization of protein-metal complexes.Eur. J. Biochem. 88, 229–37.PubMedGoogle Scholar
  107. Szent-Gyorgyi, A. (1951)Chemistry of Muscle Contraction, 2nd edn. New York: Academic Press.Google Scholar
  108. Tobacman, L. S. &Korn, E. D. (1983) The kinetics of actin nucleation and polymerization.J. Biol. Chem. 258, 3207–14.PubMedGoogle Scholar
  109. Tonomura, Y. &Yoshimura, J. (1961) Removal of bound nucleotide and calcium of G-actin by treatment with ethylenediamine-tetraacetic acid.J. Biochem. (Tokyo) 50, 79–80.Google Scholar
  110. Valentin-Ranc., C. &Carlier, M-F. (1989) Evidence for the direct interaction between tightly bound metal ion and ATP on actin.J. Biol. Chem. 264, 20871–80.PubMedGoogle Scholar
  111. Waechter, F. &Engel, J. (1975) The kinetics of the exchange of G-actin-bound 1:N6-ethenoadenosine 5-triphosphate with ATP as followed by fluorescence.Eur. J. Biochem. 57, 543–59.Google Scholar
  112. Waechter, F. &Engel, J. (1977) Association kinetics and binding constants of nucleotide triphosphates with G-actin.Eur. J. Biochem. 74, 227–32.PubMedGoogle Scholar
  113. Weber, A., Herz, R. &Reiss, I. (1969) The role of magnesium in the relaxation of myofibrils.Biochemistry 8, 2266–71.PubMedGoogle Scholar
  114. Wegner, A. &Engel J. (1975) Kinetics of the cooperative association of actin to actin filaments.Biophys. Chem. 3, 215–25.PubMedGoogle Scholar
  115. Zimmerle, C. T., Patane, K. &Frieden, C. (1987) Divalent cation binding to the high- and low-affinity sites on G-actin.Biochemistry 26, 6545–52.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • James E. Estes
    • 1
    • 3
  • Lynn A. Selden
    • 1
  • Henry J. Kinosian
    • 3
  • Lewis C. Gershman
    • 2
    • 3
    • 4
  1. 1.Research ServiceVeterans Administration Medical CentreAlbanyUSA
  2. 2.Medical ServiceVeterans Administration Medical CentreAlbanyUSA
  3. 3.Department of Physiology and Cell BiologyAlbany Medical CollegeAlbanyUSA
  4. 4.Department of MedicineAlbany Medical CollegeAlbanyUSA

Personalised recommendations