Annali di Matematica Pura ed Applicata

, Volume 133, Issue 1, pp 327–361 | Cite as

Divisors of finite character

  • Karl Egil Aubert
Article

Summary

The present paper purports to show that divisors of finite character—also called t-ideals—are the natural building blocks of the general theory of divisibility. Divisors of finite character are here applied to a variety of different arithmetical topics as well as to sectional and functional representation of ordered groups.

Keywords

Building Block General Theory Natural Building Finite Character Natural Building Block 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Arnold,Ideale in kommutativen Halbgruppen, Rec. Math. Soc. Moscou,36 (1929), pp. 401–407.Google Scholar
  2. [2]
    K. E. Aubert,Theory of x-ideals, Acta Math.,107 (1962), pp. 1–52.Google Scholar
  3. [3]
    K. E. Aubert,Additive ideal systems, Journal of Algebra,18 (1971), pp. 511–528.Google Scholar
  4. [4]
    K. E. Aubert,Localisation dans les systèmes d'idéaux, C.R. Acad. Sci. Paris, Sér. A,272 (1971), pp. 465–468.Google Scholar
  5. [5]
    K. E. Aubert,Ideal systems and lattice theory II, J. für die r. und angew. Math.,298 (1978), pp. 32–42.Google Scholar
  6. [6]
    K. E.Aubert,von Neumann regular ideal systems, in preparation.Google Scholar
  7. [7]
    B. Banachewski,On lattice-ordered groups, Fund. Math.,55 (1964), pp. 113–123.Google Scholar
  8. [8]
    I.Beck,Theory of ring systems, Thesis, Oslo, 1969.Google Scholar
  9. [9]
    H.Bie Lorentzen,Lokalisering i x-systemer med anvendelser, Thesis, Oslo, 1968.Google Scholar
  10. [10]
    Bigard-Keimel-Wolfenstein,Groupes et anneaux réticulés, Springer Lecture Notes No.,608 (1977).Google Scholar
  11. [11]
    Borevic-Shafarevic,Number Theory, Academic Press, New York, 1966.Google Scholar
  12. [12]
    N. Bourbaki,Commutative Algebra, Hermann, Paris, 1972.Google Scholar
  13. [13]
    A. H. Clifford,Arithmetic and ideal theory of commutative semigroups, Ann. of Math.,39 (1938), pp. 594–610.Google Scholar
  14. [14]
    W. H. Cornish,The Chinese remainder theorem and sheaf representations, Fund. Math.,96 (1977), pp. 177–187.Google Scholar
  15. [15]
    R.Dedekind,Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Teiler, Ges. Werke, vol. 2, pp. 103–148.Google Scholar
  16. [16]
    J. Dieudonné,Sur la théorie de la divisibilité, Bull. Soc. Math. de France,49 (1941), pp. 133–144.Google Scholar
  17. [17]
    I. Fleischer,Functional representation of partially ordered groups, Annals of Math.,64 (1956), pp. 260–263.Google Scholar
  18. [18]
    R. M.Fossum,The divisor class group of a Krull domain, Ergebnisse der Math., Springer,74 (1973).Google Scholar
  19. [19]
    R. Gilmer,Multiplicative ideal theory, M. Dekker, New York, 1972.Google Scholar
  20. [20]
    M. Griffin,Some results on Prüfer v-multiplication rings, Canad. J. Math.,19 (1967), pp. 710–722.Google Scholar
  21. [21]
    P. Jaffard,Les systèmes d'idéaux, Dunod, Paris, 1960.Google Scholar
  22. [22]
    P. Jaffard,Contribution a l'étude des groupes ordonnés, J. Math. pures et appl.,32 (1953), pp. 203–280.Google Scholar
  23. [23]
    P. Jaffard,Sur le spectre d'un groupe réticulé et l'unicité des réalisations irréductibles, Ann. Univ. Lyon, Sect. A,22 (1959), pp. 43–47.Google Scholar
  24. [24]
    K.Keimel,Représentation de groupes et d'anneaux réticulés par des sections dans des faisceaux, Thèse, Paris, (1970).Google Scholar
  25. [25]
    K. Keimel,The representation of lattice-ordered groups and rings by sections in sheaves, Springer Lecture Notes in Math.,248 (1971), pp. 1–96.Google Scholar
  26. [26]
    L. Kronecker,Grundzüge einer arithmetischen Theorie der algebraischen Grössen, J. reine u. angew. Math.,92 (1882), pp. 1–122.Google Scholar
  27. [27]
    W.Krull,Idealtheorie, Ergebnisse der Math. vol.4, (1935).Google Scholar
  28. [28]
    W. Krull,Beiträge sur Arithmetik kommutativer Integritätsbereiche I, Math. Zeitschr.,41 (1936), pp. 545–577.Google Scholar
  29. [29]
    W. Krull,Zur Arithmetik der endlichen diskreten Hauptordnungen, J. reine u. angew. Math.,189 (1951), pp. 118–128.Google Scholar
  30. [30]
    W.Krull,Zur Theorie der Bewertungen mit nicht-archimedisch geordneter Wertgruppe und der nicht-archimedisch geordneten Körper, Coll. Algèbre Sup., Bruxelles, (1956), pp. 45–77.Google Scholar
  31. [31]
    Fan Ky,Partially ordered additive groups of continuous functions, Annals of Math.,51 (1950), pp. 409–427.Google Scholar
  32. [32]
    D. Lassen -P. J. McCarthy,Multiplicative theory of ideals, Academic Press, New York, 1971.Google Scholar
  33. [33]
    P. Lorenzen,Abstrakte Begründung der multiplicativen Idealtheorie, Math. Z.,45 (1939), pp. 533–553.Google Scholar
  34. [34]
    J. Mott,The group of divisibility and its applications, Lecture Notes in Math.,311 (1973), pp. 1–15.Google Scholar
  35. [35]
    J. Mott,Convex directed subgroups of divisibility, Canad. J. of Math.,26 (1974), pp. 532–542.Google Scholar
  36. [36]
    T. Nakano,A theorem on lattice ordered groups and its applications to valuation theory, Math. Z.,83 (1964), pp. 140–146.Google Scholar
  37. [37]
    J. Ohm,Semi-valuations and groups of divisibility, Canad, J. of Math.,21 (1969), pp. 576–591.Google Scholar
  38. [38]
    D. Papert,A representation theory for lattice-groups, Proc. London Math. Soc.,12 (1962), pp. 100–120.Google Scholar
  39. [39]
    H. Prüfer,Untersuchungen über Teilbarkeitseigenschaften in Körpern, J. reine u. angew. Math.,168 (1932), pp. 1–36.Google Scholar
  40. [40]
    N. Railland,Sur les anneaux de Mori, C.R. de l'Académie des Sci.,286 (1978), p. 405.Google Scholar
  41. [41]
    P. Ribenboim,Théorie des groupes ordonnés, Universidad Nacional del Sur, Bahia Blanca, (1963).Google Scholar
  42. [42]
    P. Ribenboim,Le théorème d'approximation pour les valuations de Krull, Math. Z.,68 (1957), pp. 1–18).Google Scholar
  43. [43]
    L. Skula,Divisorentheorie einer Halbgruppe, Math. Z.,114 (1970), pp. 113–120.Google Scholar
  44. [44]
    B. L.van der Waerden,Algebra II, Springer Verlag, 1967.Google Scholar
  45. [45]
    H.Weyl,Algebraic theory of numbers, Princeton University Press, (1940).Google Scholar
  46. [46]
    W. Brandal,Constructing Bézout domains, Rocky Mountain J. of Math.,6 (1976), pp. 383–399.Google Scholar
  47. [47]
    K.Gudlaugsson,Unique factorization in ordered groups (in Norwegian), Thesis, Oslo, 1982.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1978

Authors and Affiliations

  • Karl Egil Aubert
    • 1
  1. 1.OsloNorway

Personalised recommendations