Advertisement

Annali di Matematica Pura ed Applicata

, Volume 157, Issue 1, pp 199–244 | Cite as

Cohesive categories and manifolds

  • Marco Grandis
Article

Sunto

Le strutture ottenibili per incollamento di «spazi elementari», come le varietà, i fibrati, le varietà fogliettate, possono essere definite da «atlanti di incollamento» e, formalmente, come categorie arricchite su opportune categorie ordinate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BC]
    R. Betti -A. Carboni,Cauchy completion and the associated sheaf, Cahiers Topologie Géom. Différentielle,23 (1982), pp. 243–256.Google Scholar
  2. [Be]
    R.Betti,Bicategorie di base, Ist. Mat. Univ. Milano, 2/S (1981).Google Scholar
  3. [Bi]
    G. J.Bird,Morita theory for enriched categories, Thesis, Univ. of Sydney (1981).Google Scholar
  4. [DH]
    R. A. Di Paola -A. Heller,Dominical categories: recursion theory without elements, J. Symb. Log.,52 (1987), pp. 594–635.Google Scholar
  5. [Di]
    R. A.Di Paola,Creativity and effective inseparability in dominical categories, in «Atti degli incontri di Logica Matematica»,2 (1983–84), Dip. Mat. Univ. Siena, pp. 477–478.Google Scholar
  6. [DS]
    N. Dunford -J. T. Schwartz,Linear operators, Part III, Wiley, Interscience, New York (1971).Google Scholar
  7. [E1]
    C. Ehresmann,Gattungen von Lokalen Strukturen, Jahres d. Deutschen Math.,60 (1957), pp. 49–77;Espèces de structures locales, Cahiers Topologie Géom. Différentielle,3 (1961), pp. 1–24.Google Scholar
  8. [E2]
    C. Ehresmann,Elargissement complet d'un foncteur local, Cahiers Topologie Géom. Différentielle,11 (1969), pp. 405–419.Google Scholar
  9. [G1]
    M. Grandis,Canonical preorder and congruence in orthodox semigroups and categories (Orthodox categories, 1), Boll. Un. Mat. Ital.,13-B (1976), pp. 634–650.Google Scholar
  10. [G2]
    M. Grandis,Regular and orthodox involution categories (Orthodox categories, 2), Boll. Un. Mat. Ital.,14-A (1977)., pp. 38–48.Google Scholar
  11. [G3]
    M. Grandis,Concrete representations for inverse and distributive exact categories, Rend. Accad. Naz. Sci. XL, Mem. Mat.,8 (1984), pp. 99–120.Google Scholar
  12. [G4]
    M. Grandis,Manifolds as enriched categories, inCategorical Topology, Prague 1988, World Scientific, Singapore (1989), pp. 358–368.Google Scholar
  13. [G5]
    M.Grandis,Cohesive categories and measurable operators, Dip. Mat. Univ. Genova, Preprint,81 (1989).Google Scholar
  14. [He]
    A.Heller,Dominical categories and recursion theory, in «Atti degli incontri di Logica Matematica»,2 (1983–84), Dip. Mat. Univ. Siena, pp. 339–344.Google Scholar
  15. [Ks]
    J. Kastl,Inverse categories, in «Algebraische Modelle, Kategorien und Gruppoide», Akademie Verlag, Berlin (1979), pp. 51–60.Google Scholar
  16. [KW]
    S.Kasangian - R. F. C.Walters,An abstract notion of glueing, unpublished manuscript (1982) (13).Google Scholar
  17. [La]
    F. W. Lawvere,Metric spaces, generalized logic and closed categories, Rend. Sem. Mat. Fis. Univ. Milano,43 (1974), pp. 135–166.Google Scholar
  18. [Ro]
    G. Rosolini,Continuity and effectiveness in topoi, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pennsylvania (1986).Google Scholar
  19. [Wa]
    R. F. C. Walters,Sheaves and Cauchy-complete categories, Cahiers Topologie Géom. Différentielle,22 (1981), pp. 282–286.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1990

Authors and Affiliations

  • Marco Grandis
    • 1
  1. 1.Dipartimento di MatematicaUniversità di GenovaGenovaItalia

Personalised recommendations