Annali di Matematica Pura ed Applicata

, Volume 131, Issue 1, pp 255–264 | Cite as

On the rectilinear congruences establishing a mapping between its focal surfaces which preserves the Gauss curvature

  • Gr. Tsagas
  • B. Papantoniou


The aim of this paper is to determine rectilinear congruences in the Euclidean space of three dimension whose straight lines preserve the Gauss curvature of their focal surfaces.


Euclidean Space Gauss Curvature Focal Surface Rectilinear Congruence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Bianchi,Lezioni di Geometria differenziate, Zanichelli, Bologna, 1927.Google Scholar
  2. [2]
    L. Bianchi,Vorlesüngen über Differentialgeometrie, Zweite Auflage, Teubner, 1927.Google Scholar
  3. [3]
    L.Eisenhart,Riemannian Geometry, Princeton University Press, 1964.Google Scholar
  4. [4]
    S. Finikoff,Congruences avec les deux nappes de la surface focale applicables l'une sur l'autre par les points correspondants, Annali di Mat.,41 (1924), pp. 175–180.Google Scholar
  5. [5]
    Van K. Kommerel,Theorie der Raumkurven and krummen Flächen, de Gruyter, 1–2 Band, Berlin, 1931.Google Scholar
  6. [6]
    O. Pylarinos,Sur certains réseaux de courbes tracés sur une surface, Bull. Sc. Math. 2e,84 (1960), pp. 116–144.Google Scholar
  7. [7]
    O. Pylaeinos,Sur les surfaces à courbure moyenne constante applicable sur des surfaces de revolution, Annali di Matematica pura ed applicata, (IV),59 (1962), pp. 319–350.Google Scholar
  8. [8]
    Gr. Tsagas,Two special categories of normal rectilinear congruences, Bull. de la Soc. Math., Grèce,7 (1966), pp. 161–172.Google Scholar
  9. [9]
    Gr. Tsagas,Sur deux classes particulières de congruences de normales, C. R. Acad. Sci. Paris,263 (1966), pp. 407–409.Google Scholar
  10. [10]
    Gr. Tsagas,On the rectilinear congruence whose straight lines are tangent to one parameter family of curves on a surface, Tensor N.S.,29 (1975), pp. 287–294.Google Scholar
  11. [11]
    Gr. Tsagas,On the surfaces whose normal bundles have special properties, Bull. de la Soc. Math., Grèce,15 (1974), pp. 59–67.Google Scholar
  12. [12]
    Gr.Tsagas - B.Papantoniou,Special class or rectilinear congruences, to appear Mathematica Balkanika.Google Scholar
  13. [13]
    Gr.Tsagas - B.Papantoniou,On the rectilinear congruences of Lorentz manifold establishing an area preserving representation, to appear Tensor N.S.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1982

Authors and Affiliations

  • Gr. Tsagas
    • 1
  • B. Papantoniou
    • 1
  1. 1.ThessalonikiGreece

Personalised recommendations