Annali di Matematica Pura ed Applicata

, Volume 131, Issue 1, pp 203–231 | Cite as

A model for hysteresis of distributed systems

  • A. Visintin


Memory effects of hysteresis type are taken into account as constitutive relations for parabolic and hyperbolic problems, also with free boundaries; existence results are proved. A scheme of construction of functionals representing hysteresis phenomena is presented and examples are given; in particular ferromagnetism is considered.


Free Boundary Constitutive Relation Existence Result Memory Effect Hysteresis Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.Ciarlet,The finite elements method, North Holland, 1978.Google Scholar
  2. [2]
    G. Duvaut -J. L. Lions,Inequalities in mechanics and physics, Grund. Math. Wiss.,219, Springer, Berlin, (1976).Google Scholar
  3. [3]
    K.Glashoff - J.Sprekels,An application of Glicksberg's theorem to set-valued integral equations arising in the theory of thermostats, S.I.A.M. J. Math. Anal., May 1981.Google Scholar
  4. [4]
    K.Glashoff - J.Sprekels,The regulation of temperature by thermostats and set-valued integral equations, to appear on J. Int. Equ.Google Scholar
  5. [5]
    M. A. Krasnosel'skii,Equations with nonlinearities of hysteresis type (Russian), VII, Int. Konf. Nichtlineare Schwing., Berlin, 1975, Bd. I, 1; Abh. Akad. Wiss. DDR, Jahrg. 1977,3 (1977), pp. 437–458 (English abstract in Zentralblatt fùr Mathematik, 406-93032).Google Scholar
  6. [6]
    M. A. Krasnosel'skii, A. V. Pokrovskii,Operators representing non linearities of hysteresis type (Russian), in «Theory of operators in functional spaces», editor G. P. Akilov, Nauka, Novosibirsk (1977).Google Scholar
  7. [7]
    J. L. Lions,Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.Google Scholar
  8. [8]
    J. L. Lions -E. Magenes,Non homogeneous boundary value problems, vol. I, Grund. Math. Wiss.,181, Springer, Berlin, (1972).Google Scholar
  9. [9]
    E. Perucca,Fisica generale e sperimentale, U.T.E.T., Torino, 1963.Google Scholar
  10. [10]
    A.Visintin,Phase transitions with delay, to appear, on « Control and Cybernetics ».Google Scholar
  11. [11]
    A. Visintin,Hystérésis dans les systèmes distribués, C.R. Acad. Sci. Paris, t. 293 (14 déc. 1981), 625–628.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1982

Authors and Affiliations

  • A. Visintin
    • 1
  1. 1.Pavia

Personalised recommendations