Advertisement

Annali di Matematica Pura ed Applicata

, Volume 160, Issue 1, pp 331–345 | Cite as

The prime spaces as spectral spaces

  • Marco Fontana
  • Francesco Pappalardi
Article
  • 28 Downloads

Keywords

Spectral Space Prime Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-D-F]
    D. F. Anderson -D. E. Dobbs -M. Fontana,On treed Nagata rings, J. Pure Appl. Algebra,61 (1989), 107–122.Google Scholar
  2. [B]
    N. Bourbaki,Algèbre Commutative, Masson, Paris (1985).Google Scholar
  3. [B-L]
    M. Boisen -M. Larsen,Prüfer and valutation rings with zero divisors, Pac. J. Math.,40 (1972), pp. 7–12.Google Scholar
  4. [Co]
    I. G. Connell,A natural transformation of the Specfunctor, J. Algebra,10 (1968), pp. 69–91.Google Scholar
  5. [D]
    J. Dugundji,Topology, Allyn and Bacon, Boston (1969).Google Scholar
  6. [D-F]
    D. E. Dobbs -M. Fontana,Kronecker function rings and abstract Riemann surfaces, J. Algebra,99 (1986), pp. 263–274.Google Scholar
  7. [D-F-F]
    D. E. Dobbs -R. Fedder -M. Fontana,Abstract Riemann surfaces of integrals domains and spectral spaces, Ann. Mat. Pura Appl.,148 (1987), pp. 101–115.Google Scholar
  8. [F]
    M. Fontana,Topologically defined classes of commutative rings, Ann. Mat. Pura Appl.,123 (1980), pp. 331–355.Google Scholar
  9. [Fr]
    P. Froeschl,Chained rings, Pac. J. Math.,65 (1976), pp. 47–53.Google Scholar
  10. [Gi1]
    F. Gilmer,Multiplicative Ideal Theory, Queen's Univ. Press, Kingston (1968).Google Scholar
  11. [Gi2]
    R. Gilmer,Multiplicative Ideal Theory, Dekker, New York (1972).Google Scholar
  12. [Gr1]
    M. Griffin,Prüfer rings with zero divisors, J. Reine Angew. Math.,239–240 (1970), pp. 55–67.Google Scholar
  13. [Gr2]
    M. Griffin,Valuations and Prüfer rings, Can. J. Math.,26 (1974), pp. 412–429.Google Scholar
  14. [G-D]
    A.Grothendieck - J. A.Dieudonné,Eléménts des Géométrie Algébrique - I, Springer (1971).Google Scholar
  15. [H]
    D. K.Harrison,Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc.,68 (1968).Google Scholar
  16. [H-V]
    D. K.Harrison - M. A.Vitulli,v-valuation of a commutative ring — I, (preprint).Google Scholar
  17. [Ho]
    M. Hochster,Prime ideal structure in commutative rings, Trans. Amer. Math. Soc.,142 (1969), pp. 43–59.Google Scholar
  18. [Hu]
    J. Huckaba,Commutative Rings with Zero Divisors, Dekker, New York (1988).Google Scholar
  19. [J]
    C. V. Jensen,Arithmetical rings, Acta Math. Acad. Sci. Hung.,17 (1966), pp. 115–123.Google Scholar
  20. [M]
    M. E. Manis,Extension of valuation theory, Bull. Amer. Math. Soc,73 (1967), pp. 735–736.Google Scholar
  21. [Ma]
    A. Mavelli,Valutazioni e Posti su anelli commutativi unitari, Tesi di Laurea, Roma (1986).Google Scholar
  22. [Pa]
    I. J. Papick,Topologically defined classes of going-down domains, Trans. Amer. Math. Soc.,219 (1976), pp. 1–37.Google Scholar
  23. [S]
    P. Samuel,La notion de place dans un anneau, Bull. Soc. Math. France,85 (1957), pp. 123–133.Google Scholar
  24. [Z-S]
    O. Zariski -P. Samuel,Commutative Algebre, Vol. II, Springer, New York (1960).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1991

Authors and Affiliations

  • Marco Fontana
    • 1
  • Francesco Pappalardi
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma «La Sapienza»RomaItalia
  2. 2.Department of MathematicsMcGill UniversityMontréalCanada

Personalised recommendations