Annali di Matematica Pura ed Applicata

, Volume 160, Issue 1, pp 331–345 | Cite as

The prime spaces as spectral spaces

  • Marco Fontana
  • Francesco Pappalardi
Article
  • 28 Downloads

Keywords

Spectral Space Prime Space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-D-F]
    D. F. Anderson -D. E. Dobbs -M. Fontana,On treed Nagata rings, J. Pure Appl. Algebra,61 (1989), 107–122.Google Scholar
  2. [B]
    N. Bourbaki,Algèbre Commutative, Masson, Paris (1985).Google Scholar
  3. [B-L]
    M. Boisen -M. Larsen,Prüfer and valutation rings with zero divisors, Pac. J. Math.,40 (1972), pp. 7–12.Google Scholar
  4. [Co]
    I. G. Connell,A natural transformation of the Specfunctor, J. Algebra,10 (1968), pp. 69–91.Google Scholar
  5. [D]
    J. Dugundji,Topology, Allyn and Bacon, Boston (1969).Google Scholar
  6. [D-F]
    D. E. Dobbs -M. Fontana,Kronecker function rings and abstract Riemann surfaces, J. Algebra,99 (1986), pp. 263–274.Google Scholar
  7. [D-F-F]
    D. E. Dobbs -R. Fedder -M. Fontana,Abstract Riemann surfaces of integrals domains and spectral spaces, Ann. Mat. Pura Appl.,148 (1987), pp. 101–115.Google Scholar
  8. [F]
    M. Fontana,Topologically defined classes of commutative rings, Ann. Mat. Pura Appl.,123 (1980), pp. 331–355.Google Scholar
  9. [Fr]
    P. Froeschl,Chained rings, Pac. J. Math.,65 (1976), pp. 47–53.Google Scholar
  10. [Gi1]
    F. Gilmer,Multiplicative Ideal Theory, Queen's Univ. Press, Kingston (1968).Google Scholar
  11. [Gi2]
    R. Gilmer,Multiplicative Ideal Theory, Dekker, New York (1972).Google Scholar
  12. [Gr1]
    M. Griffin,Prüfer rings with zero divisors, J. Reine Angew. Math.,239–240 (1970), pp. 55–67.Google Scholar
  13. [Gr2]
    M. Griffin,Valuations and Prüfer rings, Can. J. Math.,26 (1974), pp. 412–429.Google Scholar
  14. [G-D]
    A.Grothendieck - J. A.Dieudonné,Eléménts des Géométrie Algébrique - I, Springer (1971).Google Scholar
  15. [H]
    D. K.Harrison,Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc.,68 (1968).Google Scholar
  16. [H-V]
    D. K.Harrison - M. A.Vitulli,v-valuation of a commutative ring — I, (preprint).Google Scholar
  17. [Ho]
    M. Hochster,Prime ideal structure in commutative rings, Trans. Amer. Math. Soc.,142 (1969), pp. 43–59.Google Scholar
  18. [Hu]
    J. Huckaba,Commutative Rings with Zero Divisors, Dekker, New York (1988).Google Scholar
  19. [J]
    C. V. Jensen,Arithmetical rings, Acta Math. Acad. Sci. Hung.,17 (1966), pp. 115–123.Google Scholar
  20. [M]
    M. E. Manis,Extension of valuation theory, Bull. Amer. Math. Soc,73 (1967), pp. 735–736.Google Scholar
  21. [Ma]
    A. Mavelli,Valutazioni e Posti su anelli commutativi unitari, Tesi di Laurea, Roma (1986).Google Scholar
  22. [Pa]
    I. J. Papick,Topologically defined classes of going-down domains, Trans. Amer. Math. Soc.,219 (1976), pp. 1–37.Google Scholar
  23. [S]
    P. Samuel,La notion de place dans un anneau, Bull. Soc. Math. France,85 (1957), pp. 123–133.Google Scholar
  24. [Z-S]
    O. Zariski -P. Samuel,Commutative Algebre, Vol. II, Springer, New York (1960).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1991

Authors and Affiliations

  • Marco Fontana
    • 1
  • Francesco Pappalardi
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma «La Sapienza»RomaItalia
  2. 2.Department of MathematicsMcGill UniversityMontréalCanada

Personalised recommendations