Annali di Matematica Pura ed Applicata

, Volume 151, Issue 1, pp 247–261 | Cite as

Problemi e convergenze variazionali su domini non limitati

  • Gianfranco Bottaro
  • Pirro Oppezzi
Article
  • 20 Downloads

Summary

We introduce a class of second order elliptic operators from H 0 1 (Ω) to his dual space H−1(Ω), where Ω is an open set in Rn that we allow to be unbounded. We prove that such operators are continuously invertible and that the constant majoryzing the norm of their inverses depends only on the parameters of the class. We prove moreover that if T ε H−1(Ω) is given then the set of the L−1T, where L belongs to the mentioned class is relatively compact in L2(Ω). Next we study the relationships between several kinds of convergence (one of them is the G-convergence) and we study in what cases the spectrum function is semicontinuous or continuous on certain subsets of our class of operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    P. A.Adams,Sobolev spaces, Academic Press (1975).Google Scholar
  2. [B]
    G. F. Bottaro,Problema di Dirichlet e misto per equazioni ellittiche variazionali, Rend. Accad. Naz. Lincei,55 (1973), pp. 187–193.Google Scholar
  3. [BcMc]
    L. Boccardo -P. Marcellini,Sulla convergenza delle soluzioni di disequazioni variazionali, Ann. Mat. Pura Appl., (IV),110 (1976), pp. 137–159.Google Scholar
  4. [BtM]
    G. F. Bottaro -M. E. Marina,Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati, Boll. Un. Mat. Ital., (4),8 (1973), pp. 46–58.Google Scholar
  5. [DS]
    N.Dundford - J. T.Schwartz,Linear operators, part 1, Interscience (1957).Google Scholar
  6. [FF]
    H. Federer -W. L. Fleming,Normal and integral currents, Ann. of Math.,72 (1960), pp. 458–520.Google Scholar
  7. [K]
    T.Kato,Perturbation theory for linear operators, Springer (1966).Google Scholar
  8. [L1]
    P. L. Lions,Remarques sur les équations linéaires elliptiques du second ordre sous forme de divergence dans les domaines non bornés, Atti Accad. Naz. Lincei Rend., VIII,78 (1985), pp. 205–218.Google Scholar
  9. [L2]
    P. L. Lions,Remarques sur les equations linéaires elliptiques du second ordre sous forme de divergence dans les domaines non bornées II, Atti Accad. Naz. Lincei Rend., VIII,79 (1985), pp. 178–183.Google Scholar
  10. [Sb]
    C. Sbordone,Alcune questioni di convergenza per operatori differenziali del 2 ° ordine, Boll. Un. Mat. Ital., (4),10 (1974), pp. 672–682.Google Scholar
  11. [St]
    G. Stampacchia,Le probleme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier,15 (1965), pp. 189–257.Google Scholar
  12. [T]
    G.Talenti,Spectrum of the Laplace operator acting in Lp(Rn), Sympos. Math. (1972), pp. 185–232.Google Scholar
  13. [ZKON]
    V. V. Zhikov -S. M. Kozlov -O. A. Oleinik -K. T. Ngoan,Averaging and G-convergence of differential operator, Russian Math. Surv.,34 (1979), pp. 69–147.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1988

Authors and Affiliations

  • Gianfranco Bottaro
    • 1
  • Pirro Oppezzi
    • 1
  1. 1.Istituto MatematicoUniversitàGenovaItalia

Personalised recommendations