Annali di Matematica Pura ed Applicata

, Volume 126, Issue 1, pp 187–207 | Cite as

A novel type of wave behaviour in a compressible inviscid dipolar fluid and stability characteristics of generalized fluids

  • Brian Straughan


A new type of wave behaviour is found for third order waves in a compressible inviscid dipolar fluid. Several stability-like results are presented for the theories of a viscous incompressible dipolar fluid and a mixture of two viscous incompressible fluids.


Stability Characteristic Viscous Incompressible Fluid Incompressible Fluid Wave Behaviour Generalize Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Ariman -M. A. Turk -N. D. Sylvester,Applications of microcontinuum fluid mechanics, Int. J. Engng. Sci.,12 (1974), pp. 273–293.Google Scholar
  2. [2]
    R. J. Atkin -R. E. Craine,Continuum theories of mixtures: applications, J. Inst. Maths. Applics.,17 (1976), pp. 153–207.Google Scholar
  3. [3]
    C. E. Beevers,On the stability of the equations of a binary mixture of compressible Newtonian fluids, Lett. App. Engng. Sci.,1 (1973), pp. 543–553.Google Scholar
  4. [4]
    C. E. Beevers -R. E. Craine,A stability theorem for a mixture of two viscous fluids at different temperatures, Arch. Rational Mech. Anal.,63 (1977), pp. 155–168.Google Scholar
  5. [5]
    J. L. Bleustein -A. E. Green,Dipolar fluids, Int. J. Engng. Sci.,5 (1967), pp. 323–340.Google Scholar
  6. [6]
    P. J. Chen,Growth and decay of waves in solids, in Handbuch der Physik, vol. VIa/3, Srpinger-Verlag, Berlin-Heidelberg-New York, 1973.Google Scholar
  7. [7]
    P. S. Crooke,On growth properties of solutions of the Saffman dusty gas model, ZAMP,23 (1972), pp. 182–200.Google Scholar
  8. [8]
    W. A. Day,The effect of surface tension on the motion of an isolated fluid body, Arch. Rational Mech. Anal.,52 (1973), pp. 104–111.Google Scholar
  9. [9]
    J. P. Dias,Sur l'existence et unicité de solutions d'un modèle approximé des équations d'évolution tridimensionnelles d'un cristal liquide nématique, Ann. Scuola Norm. Sup. Pisa, Ser. IV,5 (1978), pp. 1–13.Google Scholar
  10. [10]
    J. E. Dunn -R. L. Fosdick,Thermodynamics, stability and boundedness of fluids of complexity 2and fluids of second grade, Arch. Rational Mech. Anal.,56 (1974), pp. 191–252.Google Scholar
  11. [11]
    F. Franchi,Sull'unicità delle soluzioni delle equazioni di Boussinesq modificate in base all'eguazione costitutiva di Cattaneo-Fox in un dominio illimitato, Rend. Lincei,65 (19782), pp. 275–281.Google Scholar
  12. [12]
    G. P. Galdi,Variational methods for stability of fluid motions in unbounded domains, Ric. Matematica,27 (1978), pp. 387–404.Google Scholar
  13. [13]
    G. P. Galdi -S. Rionero,A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Engng. Sci.,45 (1977), pp. 105–108.Google Scholar
  14. [14]
    A. E. Green -P. M. Naghdi,On the derivation of discontinuity conditions in continuum mechanics, Int. J. Engng. Sci.,2 (1965), pp. 621–624.Google Scholar
  15. [15]
    A. E. Green -P. M. Naghdi,A note on dipolar inertia, Quart. App. Math.,28 (1970), pp. 458–460.Google Scholar
  16. [16]
    M. E. Gurtin -A. S. Vargas,On the classical theory of reacting fluid mixtures, Arch. Rational Mech. Anal.,43 (1971), pp. 179–197.Google Scholar
  17. [17]
    M. E. Gurtin -P. Villaggio,On stability in the classical linear theory of fluid mixtures, Ann. Mat. Pura Appl,114 (1976), pp. 57–67.Google Scholar
  18. [18]
    R. N. Hills,The slow flow of a dipolar fluid past a sphere, Int. J. Engng. Sci.,5 (1967), pp. 957–967.Google Scholar
  19. [19]
    R. N. Hills,On uniqueness and continuous dependence for a linear micropolar fluid, Int. J. Engng. Sci.,11 (1973), pp. 369–376.Google Scholar
  20. [20]
    R. N. Hills,On the stability of a linear dipolar fluid, Acta Mech.,17 (1973), pp. 255–261.Google Scholar
  21. [21]
    D. T. J. Hurle -E. Jakeman,Soret-driven thermosolutal convection, J. Fluid Mech.,47 (1971), pp. 667–687.Google Scholar
  22. [22]
    D. D. Joseph,Stability of fluid motions, II, Springer-Verlag, Berlin - Heidelberg - New York, 1976.Google Scholar
  23. [23]
    K. A. Kline,The Reynolds-Orr energy equation, with applications to the stability of polar fluid motions, Trans. Soc. Rheol.,14 (1970), pp. 335–349.Google Scholar
  24. [24]
    R. J. Knops -B. Straughan,Mean velocity and the volume flow rate for steady one-dimensional flow of a mixture of two incompressible Newtonian fluids, Q. Jl. Mech. Appl. Math.,32 (1979), pp. 259–263.Google Scholar
  25. [25]
    F. M. Leslie,Some thermal effects in cholesteric liquid crystals, Proc. Roy. Soc., A 307 (1968), pp. 359–372.Google Scholar
  26. [26]
    K. A. Lindsay -B. Straughan,Acceleration waves and second sound in a perfect fluid, Arch. Rational Mech. Anal.,68 (1978), pp. 53–87.Google Scholar
  27. [27]
    M. Maiellaro,Sulla stabilità non lineare in media di una miscela csonvettiva termodiffusa binaria, Rend. Accad. Sci. Fis. Mat., Napoli,43 (1976), pp. 317–332.Google Scholar
  28. [28]
    J. K. Platten -G. Chavepeyer,Oscillatory motion in Bénard cell due to the Soret effect, J. Fluid Mech.,60 (1973), pp. 305–319.Google Scholar
  29. [29]
    S. Rionero -G. P. Galdi,The weight function approach to uniqueness of viscous flows in unbounded domains, Arch. Rational Mech. Anal.,69 (1979), pp. 37–52.Google Scholar
  30. [30]
    B. Straughan,Uniqueness and stability for the conduction-diffusion solution to the Boussinesq equations backward in time, Proc. Roy. Soc., A347 (1975), pp. 435–446.Google Scholar
  31. [31]
    B. Straughan,Global nonexistence of solutions to Ladyzhenskaya's variants of the Navier-Stokes equations, backward in time, Proc. Roy. Soc. Edinburgh, A75 (1976), pp. 165–170.Google Scholar
  32. [32]
    B.Straughan,Stability of uniform equilibrium states of a nematic liquid crystal, J. Mecanique,19 (1980).Google Scholar
  33. [33]
    G. I. Taylor,On the decay of vortices in a viscous fluid, Phil. Mag.,46 (1923), pp. 671–674.Google Scholar
  34. [34]
    C. Truesdell,Precise theory of the absorption and dispersion of forced plane infinitesimal waves according to the Navier-Stokes equations, J. Rational Mech. Anal.,2 (1953), pp. 643–741.Google Scholar
  35. [35]
    C. Truesdell -W. Noll,The nonlinear field theories of mechanics, in Handbuch der Physik, vol; III/3, Springer-Verlag, Berlin - Heidelberg - New York, 1965.Google Scholar
  36. [36]
    C. Truesdell -R. Toupin,The classical field theories, in Handbuch der Physik, vol. III/1, Springer-Verlag, Berlin - Gottingen - Heidelberg, 1960.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1980

Authors and Affiliations

  • Brian Straughan
    • 1
  1. 1.Glasgow

Personalised recommendations