Mathematical systems theory

, Volume 8, Issue 2, pp 167–175 | Cite as

Endomorphisms of irreducible subshifts of finite type

  • Ethan M. Coven
  • Michael E. Paul


Computational Mathematic Finite Type Irreducible Subshifts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. L. Adler, A. G. Konheim andM. H. McAndrew, Topological entropy,Trans. Amer. Math. Soc. 114 (1965), 309–319.Google Scholar
  2. [2]
    P. Billingsley,Ergodic Theory and Information, Wiley, New York, 1965.Google Scholar
  3. [3]
    R. Bowen, Markov partitions for axiom A diffeomorphisms,Amer. J. Math. 92 (1970), 725–747.Google Scholar
  4. [4]
    R. Bowen, Topological entropy and axiom A,Global Analysis, Proc. Sympos. Pure Math., Vol. 14, Amer. Math. Soc., Providence, R.I., pp. 23–41.Google Scholar
  5. [5]
    R. Bowen, Topological entropy for non-compact sets (preprint).Google Scholar
  6. [6]
    F. R. Gantmacher,The Theory of Matrices, Vol. II, Chelsea, New York, 1959.Google Scholar
  7. [7]
    L. W. Goodwyn, Comparing topological entropy with measure-theoretic entropy,Amer. J. Math. 94 (1972), 366–388.Google Scholar
  8. [8]
    L. W. Goodwyn, Topological entropy and expansive cascades, Univ. of Maryland Dissertation, 1968.Google Scholar
  9. [9]
    G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,Math. Systems Theory 3 (1969), 320–375.Google Scholar
  10. [10]
    D. Newton andW. Parry, On a factor automorphism of a normal dynamical system,Ann. Math. Statist. 37 (1966), 1528–1533.Google Scholar
  11. [11]
    W. Parry, Intrinsic Markov chains,Trans. Amer. Math. Soc. 112 (1964), 55–66.Google Scholar
  12. [12]
    S. Smale, Differentiable dynamical systems,Bull. Amer. Math. Soc. 73 (1967), 747–817.Google Scholar
  13. [13]
    B. Weiss, Intrinsically ergodic systems,Bull. Amer. Math. Soc. 76 (1970), 1266–1269.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Ethan M. Coven
    • 1
  • Michael E. Paul
    • 1
  1. 1.Department of MathematicsWesleyan UniversityMiddletownUSA

Personalised recommendations