Advertisement

Mathematical systems theory

, Volume 8, Issue 2, pp 167–175 | Cite as

Endomorphisms of irreducible subshifts of finite type

  • Ethan M. Coven
  • Michael E. Paul
Article

Keywords

Computational Mathematic Finite Type Irreducible Subshifts 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. L. Adler, A. G. Konheim andM. H. McAndrew, Topological entropy,Trans. Amer. Math. Soc. 114 (1965), 309–319.Google Scholar
  2. [2]
    P. Billingsley,Ergodic Theory and Information, Wiley, New York, 1965.Google Scholar
  3. [3]
    R. Bowen, Markov partitions for axiom A diffeomorphisms,Amer. J. Math. 92 (1970), 725–747.Google Scholar
  4. [4]
    R. Bowen, Topological entropy and axiom A,Global Analysis, Proc. Sympos. Pure Math., Vol. 14, Amer. Math. Soc., Providence, R.I., pp. 23–41.Google Scholar
  5. [5]
    R. Bowen, Topological entropy for non-compact sets (preprint).Google Scholar
  6. [6]
    F. R. Gantmacher,The Theory of Matrices, Vol. II, Chelsea, New York, 1959.Google Scholar
  7. [7]
    L. W. Goodwyn, Comparing topological entropy with measure-theoretic entropy,Amer. J. Math. 94 (1972), 366–388.Google Scholar
  8. [8]
    L. W. Goodwyn, Topological entropy and expansive cascades, Univ. of Maryland Dissertation, 1968.Google Scholar
  9. [9]
    G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,Math. Systems Theory 3 (1969), 320–375.Google Scholar
  10. [10]
    D. Newton andW. Parry, On a factor automorphism of a normal dynamical system,Ann. Math. Statist. 37 (1966), 1528–1533.Google Scholar
  11. [11]
    W. Parry, Intrinsic Markov chains,Trans. Amer. Math. Soc. 112 (1964), 55–66.Google Scholar
  12. [12]
    S. Smale, Differentiable dynamical systems,Bull. Amer. Math. Soc. 73 (1967), 747–817.Google Scholar
  13. [13]
    B. Weiss, Intrinsically ergodic systems,Bull. Amer. Math. Soc. 76 (1970), 1266–1269.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Ethan M. Coven
    • 1
  • Michael E. Paul
    • 1
  1. 1.Department of MathematicsWesleyan UniversityMiddletownUSA

Personalised recommendations