Annali di Matematica Pura ed Applicata

, Volume 130, Issue 1, pp 223–255 | Cite as

Tangency and differentiation: Some applications of convergence theory

  • Szymon Dolecki
Article

Summary

We present a unified approach based on convergence theory to approximating cones and generalized derivatives.

Keywords

Unify Approach Generalize Derivative Convergence Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.Bouligand,Introduction à la géometrie infinitesimale directe, Vuibert, Paris, 1932.Google Scholar
  2. [2]
    G. Buttazzo,Su una definizione generale dei Γ-limiti, Boll. U.M.I., (5)14-B (1977), pp. 722–744.Google Scholar
  3. [3]
    G.Buttazzo - G.Dal Maso,Γ-convergence and optimal control problems, Scuola Normale Superiore, Pisa (preprint) (1981).Google Scholar
  4. [4]
    G. Choquet,Convergences, Annales Université de Grenoble,23 (1947–1948), pp. 55–112.Google Scholar
  5. [5]
    F. H. Clarke,Generalized gradients and applications, Trans. A.M.S.,205 (1975), pp. 247–262.Google Scholar
  6. [6]
    B. D. Craven -B. Mond,Lagrangean conditions for quasi differentiable optimisation, Survey of Math. Programming,12 (1980), pp. 177–192.Google Scholar
  7. [7]
    E. De Giorgi,Γ-convergenza, G-convergenza, Boll. U.M.I., (5)14-A (1977), pp. 213–220.Google Scholar
  8. [8]
    E. De Giorgi,Convergence problems for functionals and operators, in Proc. Internat. Meeting « Recent Methods in Nonlinear Analysis », Rome, 1978,E. De Giorgi -E. Magenes -U. Mosco (eds.), Pitagora, Bologna, 1979, pp. 131–188.Google Scholar
  9. [9]
    E. De Giorgi -T. Franzoni,Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei,58 (8) (1975), pp. 842–850.Google Scholar
  10. [10]
    Z.Denkowski,The convergence of generalized sequences of states and functions in locally convex spaces, Istitute of Math. Polish Academy of Sciences, Preprint 151.Google Scholar
  11. [11]
    S.Dolecki,Metrically upper semicontinuous multifunctions and their intersections, Math. Res. Center, Madison, Wis., Report 2035 (1980).Google Scholar
  12. [12]
    S.Dolecki,Hypertangent cones for a special class of sets, to appear in Optimization: Theory and Algorithms, Hiriart-Urruty, Oettli, Stoer (eds.), M. Dekker, New York.Google Scholar
  13. [13]
    S. Dolecki -S. Rolewicz,A characterization of semicontinuity-preserving multifunctions, J. Math. Anal. Appl.,65 (1978), pp. 26–31.Google Scholar
  14. [14]
    S.Dolecki - G.Salinetti - R. J.-B.Wets,Convergence of functions: equi-semicontinuity, to appear, Trans. Amer. Math. Soc.Google Scholar
  15. [15]
    A. Ya. Dubovitzkii -A. A. Milyutin,Extremal problems in presence of constraints, Z. Vichisl. Mat. i Mat. Fiz.,5 (1965), pp. 395–453 (in Russian).Google Scholar
  16. [16]
    J.-B.Hiriart-Urruty, Thèse, Université de Clermont II (1977).Google Scholar
  17. [17]
    J.-B. Hiriart-Urruty,Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Operations Res.,4 (1979), pp. 79–97.Google Scholar
  18. [18]
    A. D. Ioffe,Necessary and sufficient conditions for a local minimum. — II:Levitin-Milyutin-Osmolovskii approximation, SIAM J. Control Optim.,17 (1979), pp. 251–265.Google Scholar
  19. [19]
    J.-L. Joly,Une famille de topologies sur l'ensemble des fonctions convexes pour lesquelles la polarité est bicontinue, J. Math. pures et appl.,52 (1973), pp. 421–441.Google Scholar
  20. [20]
    C. Kuratowski,Topologie, Vol. I, Panstwowe Wydawnictwo Naukowe, Warszawa, 1958, 4th edition.Google Scholar
  21. [21]
    R. Mifflin,Semismooth and semiconvex functions in constrained optimization, SIAM J. Control,15 (1977), pp. 959:972.Google Scholar
  22. [22]
    S.Mirică,The contingent and the paratingent as generalized derivatives of vector-valued and set-valued mappings, INCREST, Preprint 31 (1981) (Math.), Bucuresti.Google Scholar
  23. [23]
    U. Mosco,Convergence of convex sets and of solutions of variational inequalities, Adv. in Math.,3, No. 4 (1969), pp. 510–585.Google Scholar
  24. [24]
    M. Z. Nashed,Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials in nonlinear functional analysis, inNonlinear Functional Analysis and Applications, Proc. Adv. Seminar, Math. Res. Centr., Madison, Wis., 1970, Acad. Press, New York-London, 1971, pp. 103–309.Google Scholar
  25. [25]
    J.-P.Penot,The use of generalized subdifferential calculus in optimization theory, Proc. 3 Symp., Operations Res. Mannheim (1978); Methods of Operations Res., 31.Google Scholar
  26. [26]
    J.-P. Penot,A characterization of tangential regularity, Nonlinear Anal. Theory, Math. Appl.,5 (1981), pp. 625–663.Google Scholar
  27. [27]
    B. N. Pshenichnii,Necessary Conditions for an Extremum, M. Dekker, New York, 1971.Google Scholar
  28. [28]
    R. T.Rockafellar,The theory of subgradients and its applications to problems of optimization, Lecture notes, University of Montreal, 1978.Google Scholar
  29. [29]
    R. T. Rockafellar,Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math.,32 (1980), pp. 257–280.Google Scholar
  30. [30]
    R. T. Rockafellar,Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc.,39 (1979), pp. 331–355.Google Scholar
  31. [31]
    S. Rolewicz,On intersection of multifunctions, Math. Operationsforsch. Statistik, Optimization,11 (1980), pp. 3–11.Google Scholar
  32. [32]
    E. Sachs,Differentiability in optimization theory, Math. Operationsforsch. Statistik, Optim,9 (1978), pp. 497–513.Google Scholar
  33. [33]
    F. Severi,Sulla differenziabilità totale delle funzioni di più variabili reali, Annali Mat. Pura e Appl., Serie 4,13 (1935), pp. 1–35.Google Scholar
  34. [34]
    L.Thibault,Proprietés des sous-differentiels sur un espace de Banach séparable, Applications, Thèse, Université de Languedoc, Montpellier, 1976.Google Scholar
  35. [35]
    C.Ursescu,Tangent sets' calculus and necessary conditions for extremality, to appear.Google Scholar
  36. [36]
    M. Vlach,Approximation operators in optimization theory, Zeitschrift für Operations Research,25 (1981), pp. 15–23.Google Scholar
  37. [37]
    R. A. Wijsman,Convergence of sequences of convex sets, cones and functions, II, Trans. Amer. Math. Soc.,123 (1963), pp. 32–45.Google Scholar
  38. [38]
    J.-P.Penot,Compact filters, nets and relations, to appear in J. Math. Anal. Appl.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1982

Authors and Affiliations

  • Szymon Dolecki
    • 1
  1. 1.WarszawaPoland

Personalised recommendations