Annali di Matematica Pura ed Applicata

, Volume 130, Issue 1, pp 197–213 | Cite as

An existence theorem for compressible viscous fluids

  • Alberto Valli
Article

Keywords

Viscous Fluid Existence Theorem Compressible Viscous Fluid 

Sunto

Si dimostra un teorema di esistenza (locale nel tempo) per il sistema di equazioni che descrive il moto di un fluido viscoso comprimibile.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.Böhm,Existence of solutions to equations describing the temperature-dependent motion of a non-homogeneous viscous flow, inStudies on Some Nonlinear Evolution Equations, Seminarbericht Nr. 17, 1979, Humboldt-Universität zu Berlin.Google Scholar
  2. [2]
    J. P. Bourguignon -H. Brezis,Remarks on the Euler equation, J. Functional Analysis,15 (1974), pp. 341–363.Google Scholar
  3. [3]
    E. Giusti,Equazioni ellittiche del secondo ordine, Pitagora Editrice, Bologna, 1978.Google Scholar
  4. [4]
    D. Graffi,Il teorema di unicità nella dinamica dei fluidi compressibili, J. Rat. Mech. Anal.,2 (1953), pp. 99–106.Google Scholar
  5. [5]
    N. Itaya,On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodai Math. Sem. Rep.,23 (1971), pp. 60–120.Google Scholar
  6. [6]
    N. Itaya,On the initial value problem of the motion of compressible viscous fluid, especially on the problem of uniqueness, J. Math. Kyoto Univ.,16 (1976), pp. 413–427.Google Scholar
  7. [7]
    O. A.Ladyzenskaja - V. A.Solonnikov - N. N.Ural'ceva,Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, vol. 23, Providence, 1968 (translated from russian).Google Scholar
  8. [8]
    J. L. Lions -E. Magenes,Problèmes aux limites non homogènes et applications, vol. 1 and 2, Dunod, Paris, 1968.Google Scholar
  9. [9]
    A. Matsumura -T. Nishida,The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ.,20 (1980), pp. 67–104.Google Scholar
  10. [10]
    A.Matsumura - T.Nishida,The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad., to appear.Google Scholar
  11. [11]
    Ch. B. Morrey,Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin-Heidelberg-New York, 1966.Google Scholar
  12. [12]
    J. Nash,Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France,90 (1962), pp. 487–497.Google Scholar
  13. [13]
    J. Nečas,Les méthodes directes en théorie des équations elliptiques, Masson et Cie-Academia, Paris-Prague, 1967.Google Scholar
  14. [14]
    J. Serrin,On the Uniqueness of Compressible Fluid Motions, Arch. Rat. Mech. Anal.,3 (1959), pp. 271–288.Google Scholar
  15. [15]
    J. Serrin,Mathematical Principles of Classical Fluid Mechanics, Handbuch der Physik, Bd. VIII/1, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959.Google Scholar
  16. [16]
    V. A. Solonnikov,Solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid, J. Soviet Math.,14 (1980), pp. 1120–1133 (previously in Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),56 (1976), pp. 128–142 (russian)).Google Scholar
  17. [17]
    A. Tani,On the First Initial-Boundary Value Problem of Compressible Viscous Fluid Motion, Publ. RIMS, Kyoto Univ.,13 (1977), pp. 193–253.Google Scholar
  18. [18]
    B. A. Ton,On the initial boundary-value problem for viscous heat conducting compressible fluids, Kodai Math. J.,4 (1981), pp. 97–128.Google Scholar
  19. [19]
    A. Valli,Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds, Boll. Un. Mat. It., Anal. Funz. Appl.,18-C (1981), pp. 317–325.Google Scholar
  20. [20]
    A. I. Vol'pert -S. I. Hudjaev,On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sbornik,16 (1972), pp. 517–544 (previously in Mat. Sbornik,87 (1972), pp. 504–528 (russian)).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1982

Authors and Affiliations

  • Alberto Valli
    • 1
  1. 1.Povo

Personalised recommendations