Annali di Matematica Pura ed Applicata

, Volume 150, Issue 1, pp 341–362 | Cite as

Convergence of minima of integral functionals and multiplicative perturbations of the integrands

  • Riccardo De Arcangelis
  • Patrizia Donato


We study stability properties of Γ- convergence of integral functionals with respect to the multiplication of the integrands for nonnegative functions verifying suitable hypotheses. We are able to prove that, if the minima of the functionals of the type ∫fh(x, Du) dx converge to the minimum of a functional of the type ∫f(x, Du) dx, then such convergence still holds if the integrands of the previous integrals are multiplied for a weight function w.


Weight Function Stability Property Nonnegative Function Integral Functional Suitable Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A F]
    E. Acerbi -N. Fusco,Semicontinuity problems in the Calculus of Variations, Arch. for Rat. Mech. Anal.,86 (2) (1984), pp. 125–145.Google Scholar
  2. [At]
    H.Attouch,Variational convergence for functions and operators, Pitman Applicable Mathematics Series, 1984.Google Scholar
  3. [Az]
    D.Aze,Epi-convergence et dualité, applications à la convergence des variables primales et duales pour des suites de problemes d'optimisation convexe, Preprint A.V.A.M.A.C. 66000 Perpignan.Google Scholar
  4. [B L P]
    A. Bensoussan -J. L. Lions -G. Papanicolaou,Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978.Google Scholar
  5. [Bo Ma]
    L. Boccardo -P. Marcellini,Sulla convergenza delle soluzioni di disequazioni variazionali, Ann. Mat. Pura Appl., (4)110 (1976), pp. 137–159.Google Scholar
  6. [Bu DM]
    G. Buttazzo -G. Dal Maso,Γ-limits of integral functionals, J. Analyse Math.,37 (1980), pp. 145–185.Google Scholar
  7. [C S]
    L. Carbone -C. Sbordone,Some properties of Γ-limits of integral functionals; Ann. Mat. Pura Appli., (4)122 (1979), pp. 1–60.Google Scholar
  8. [Co Fe]
    R. R. Coifman -C. Fefferman,Weighted norm inequalities for maximal functions and singular integrals, Studia Math., LI (1974), pp. 241–250.Google Scholar
  9. [DM M]
    G.Dal Maso - L.Modica,A general theory of variational functionals, «Topics in Functional Analysis 1980–81», Quaderni Scuola Norm. Sup. Pisa, (1982), pp. 149–121.Google Scholar
  10. [DA]
    R. DeArcangelis,Sulla G-approssimabilità di operatori ellittici degeneri in spazi di Soboles con peso, to appear on Rendiconti Mat.Google Scholar
  11. [DA D]
    R. De Arcangelis -P. Donato,Homogenization in weighted Sobolev spaces, Ricerche Mat.,36, 2 (1985), pp. 289–308.Google Scholar
  12. [DG]
    E. DeGiqrgi,Convergence problems for functionals and operators, Proceed. Int. Meeting on «Recent methods in Nonlinear Analysis», Rome, 8–12 May 1978, Pitagora ed., Bologna, (1979), pp. 131–188.Google Scholar
  13. [DG Fr]
    E. De Giorgi -T. Franzoni,Su un tipo di convergenza variazionale, Atti Accad. Naz. dei Lincei, Rend. Cl. Sci. Mat. Fis. Natur., (8)58 (1975), pp. 842–850.Google Scholar
  14. [DG Sp]
    E. De Giorgi -S. Spagnolo,Sulla convergenza degli integrali dell'energia per operatori ellittici del seconda ordine, Boll. Un. Mat. Ital., (4)8 (1973), pp. 391–411.Google Scholar
  15. [Ei]
    G. Eisen,A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals, Manuscripta Math.,27 (1979), pp. 73–79.Google Scholar
  16. [E T]
    I. Ekeland -R. Temam,Convex analysis and variational problems, North-Holland, Amsterdam, 1976.Google Scholar
  17. [F Mo]
    N. Fusco -G. Moscariello,L 2-lower semicontinuity of functionals of quadratic type, Ann. Mat. Pura Appl., (4)129 (1981), pp. 305–326.Google Scholar
  18. [Ma1]
    P. Marcellini,Sü una convergenza di funzioni convesse, Boll. Un. Mat. Ital., (4)8 (1973), pp. 137–158.Google Scholar
  19. [Ma2]
    P.Marcellini,Some problems of semicontinuity, Proceed. Int. Meeting on «Recent methods in Nonlinear Analysis», Rome, 8–12 May 1978, Pitagora ed., Bologna, (1979), pp. 205–222.Google Scholar
  20. [Ma S]
    P. Marcellini -C. Sbordone,An approach to the asymptotic behaviour of elliptic parabolic operators, J. Math. Pures Appl., (9)56 (1977), pp. 157–182.Google Scholar
  21. [Mk]
    B. Muckenhoupt,Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Mat. Soc.,165 (1972), pp. 207–226.Google Scholar
  22. [Mu]
    F.Murat,H-convergence, Seminaire d'Analyse Fonctionelle et Numerique 1977–78 de l'Universitè d'Alger.Google Scholar
  23. [Mu T]
    F. Murat -L. Tartar,Calcul des Variations et homogénéisation, to appear on Cours de l'Ecole d'Eté d'Analyse Numérique CEA-EDF-INRIA sur l'homogénéisation (Breau sans Nappe, 1983), Collection de la Direction des Etudes et Recherches d'Electricité de France, Eyrolles, Paris, 1984.Google Scholar
  24. [Sa]
    E. T. Sawyer,A characterization of a two weights norm inequality for maximal operators, Studia Math., LXXV (1982), pp. 1–11.Google Scholar
  25. [Sp]
    S. Spagnolo,Sulla convergenza delle soluzioni di eguazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa, (3)22 (1968), pp. 575–597.Google Scholar
  26. [St]
    E. M. Stein,Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.Google Scholar
  27. [T]
    L.Tartar,Compensates compactness and applications to partial differential equations, in «Nonlinear Analysis and Mechanics: Heriott-Watt Symposium», vol. IV, ed. by R. J.Knops, Research Notes in Math., Pitman,39 (1979), pp. 136–212.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1987

Authors and Affiliations

  • Riccardo De Arcangelis
    • 1
  • Patrizia Donato
    • 2
  1. 1.Istituto di Fisica, Matematica ed Informatica, Facoltà di IngegneriaUniversità di SalernoBaronissi
  2. 2.Dipartimento di MatematicaUniversità di NapoliNapoliItalia

Personalised recommendations