Advertisement

Annali di Matematica Pura ed Applicata

, Volume 162, Issue 1, pp 215–226 | Cite as

Group varieties related to the KP hierarchy

  • Francesco Bottacin
Article

Abstract

Some remarkable relations between group varieties and the solutions of a physically important class of differential equations, called KP hierarchy, are found. In particular, it is proved that to each solution in a certain class, including a lot of physically important solutions such as the famous n-solitons, there is associated in a natural way a group variety.

Keywords

Differential Equation Important Class Group Variety Important Solution Remarkable Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Barsotti,Considerazioni sulle funzioni theta, Symp. Math.,3 (1970), p. 247.Google Scholar
  2. [2]
    I. Barsotti,Le equazioni differenziali delle funzioni theta, Rend. Acc. Naz. XL,101 (1983), p. 227.Google Scholar
  3. [3]
    I. Barsotti,Le equazioni differenziali delle funzioni theta; continuazione, Rend. Acc. Naz. XL,103 (1985), p. 215.Google Scholar
  4. [4]
    I.Barsotti,A new look for thetas, Proc. Symp. Pure Math.,47 (1987).Google Scholar
  5. [5]
    F.Bottacin,Metodi algebrici nella teoria delle equazioni differenziali delle funzioni theta, Tesi dell'Università di Padova (1987–88).Google Scholar
  6. [6]
    E. Date -M. Jimbo -M. Kashiwara -T. Miwa,Transformation groups for soliton equations — Euclidean Lie algebras and reduction of the KP hierarchy, Publ. RIMS, Kyoto Univ.,18 (1982), p. 1077.Google Scholar
  7. [7]
    E. Date -M. Jimbo -M. Kashiwara -T. Miwa,Transformation groups for soliton equations, inProceedings RIMS Symp. Nonlinear Ingegrable Systems —Classical Theory and Quantum Theory (Kyoto 1981), p. 39, World Scientific, Singapore (1983).Google Scholar
  8. [8]
    R. Hirota,Direct method of finding exact solutions of nonlinear evolution equations, Lect. Notes Math,515, pp. 40–68, Springer, Berling-Heidelberg-New York, (1976).Google Scholar
  9. [9]
    I. M. Krichever,Methods of algebraic geometry in the theory of nonlinear equations, Russ. Math. Surv.,32 (1977), p. 185.Google Scholar
  10. [10]
    D. Mumford,Tata Lectures on Theta, Birkhäuser, Boston-Basel-Stuttgart, vol. 1 (1983), vol. 2 (1984).Google Scholar
  11. [11]
    T. Shiota,Characterization of Jacobian varieties in terms of soliton equations, Invent. Math.,83 (1986), p. 333.Google Scholar

Copyright information

© Fondazione Annali di Matimatica Pura ed Applicata 1992

Authors and Affiliations

  • Francesco Bottacin
    • 1
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations