Annali di Matematica Pura ed Applicata

, Volume 162, Issue 1, pp 215–226 | Cite as

Group varieties related to the KP hierarchy

  • Francesco Bottacin
Article

Abstract

Some remarkable relations between group varieties and the solutions of a physically important class of differential equations, called KP hierarchy, are found. In particular, it is proved that to each solution in a certain class, including a lot of physically important solutions such as the famous n-solitons, there is associated in a natural way a group variety.

Keywords

Differential Equation Important Class Group Variety Important Solution Remarkable Relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Barsotti,Considerazioni sulle funzioni theta, Symp. Math.,3 (1970), p. 247.Google Scholar
  2. [2]
    I. Barsotti,Le equazioni differenziali delle funzioni theta, Rend. Acc. Naz. XL,101 (1983), p. 227.Google Scholar
  3. [3]
    I. Barsotti,Le equazioni differenziali delle funzioni theta; continuazione, Rend. Acc. Naz. XL,103 (1985), p. 215.Google Scholar
  4. [4]
    I.Barsotti,A new look for thetas, Proc. Symp. Pure Math.,47 (1987).Google Scholar
  5. [5]
    F.Bottacin,Metodi algebrici nella teoria delle equazioni differenziali delle funzioni theta, Tesi dell'Università di Padova (1987–88).Google Scholar
  6. [6]
    E. Date -M. Jimbo -M. Kashiwara -T. Miwa,Transformation groups for soliton equations — Euclidean Lie algebras and reduction of the KP hierarchy, Publ. RIMS, Kyoto Univ.,18 (1982), p. 1077.Google Scholar
  7. [7]
    E. Date -M. Jimbo -M. Kashiwara -T. Miwa,Transformation groups for soliton equations, inProceedings RIMS Symp. Nonlinear Ingegrable Systems —Classical Theory and Quantum Theory (Kyoto 1981), p. 39, World Scientific, Singapore (1983).Google Scholar
  8. [8]
    R. Hirota,Direct method of finding exact solutions of nonlinear evolution equations, Lect. Notes Math,515, pp. 40–68, Springer, Berling-Heidelberg-New York, (1976).Google Scholar
  9. [9]
    I. M. Krichever,Methods of algebraic geometry in the theory of nonlinear equations, Russ. Math. Surv.,32 (1977), p. 185.Google Scholar
  10. [10]
    D. Mumford,Tata Lectures on Theta, Birkhäuser, Boston-Basel-Stuttgart, vol. 1 (1983), vol. 2 (1984).Google Scholar
  11. [11]
    T. Shiota,Characterization of Jacobian varieties in terms of soliton equations, Invent. Math.,83 (1986), p. 333.Google Scholar

Copyright information

© Fondazione Annali di Matimatica Pura ed Applicata 1992

Authors and Affiliations

  • Francesco Bottacin
    • 1
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations