Advertisement

Clinical and biochemical responses to therapy in Alzheimer's disease and multi-infarct dementia

  • G. L. Corona
  • M. L. Cucchi
  • P. Frattini
  • G. Santagostino
  • S. Schinelli
  • A. Romani
  • A. Pola
  • F. Zerbi
  • F. Savoldi
Article

Summary

Memory performance, central monoaminergic function and sympathetic nerve activity were studied in patients with dementia of the Alzheimer type (DAT) or with multi-infarct dementia before and after 4 weeks with single or combined drug therapy (choline-piracetam). Analysis of the levels of 3-methoxy-4-hydroxyphenylglycol (MHPG), 3-methoxy-4-hydroxyphenylacetic acid (HVA) and 5-hydroxyindolacetic acid in the cerebrospinal fluid (CSF) and also in urine (plus 3-methoxy-4-hydroxy mandelic acid) showed that the basal values of HVA in the CSF and urine were lower in the more severely demented compared with the mildly demented subjects in both groups. The combined drug treatment resulted in a statistically significant increase in the MHPG level in the CSF of mildly demented subjects of the DAT group, while it seemed not to influence the other monoamine metabolites. The sympathetic nerve activity was similar in both patient groups and was unchanged after therapy. These findings suggest a dopaminergic deficit in advanced stages of the disease and a possible enhancement of the central noradrenergic output with therapy. No effects of therapy on memory performance or correlations between monoamine levels and memory test scores were noted.

Key words

Alzheimer's disease Multi-infarct dementia Monoamines Sympathetic nerve activity Treatment response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolfsson R, Gottfries CG, Winblad B (1978) Substitution therapy withl-dopa and dopamine-agonist in dementia disorders of Alzheimer type. Abstract 44, XIth International Congress of Gerontology, August 20–25, Tokyo, JapanGoogle Scholar
  2. Anderson GM, Young JG, Cohen DJ (1979) A rapid liquid chromatographic method for the determination of tyrosine, tryptophan, 5-hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid. J Chromatogr 142:501–505Google Scholar
  3. Arai H, Kosaka J, Iizuka R (1984) Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J Neurochem 43:388Google Scholar
  4. Argentiero V, Tavolato B (1980) Dopamine (DA) and serotonin metabolic levels in the cerebrospinal fluid (CSF) in Alzheimer's presenile dementia under basic conditions and after stimulation with cerebral cortex phospholipids (BCPL). J Neurol 224:53–58Google Scholar
  5. Baldi PL (1979) Un test di memoria a lungo termine: costruzione e taratura preliminare su adulti normali. Arch Psicol Neurol Psichiatr 40:25–52Google Scholar
  6. Bareggi SR, Franceschi M, Bonini L, Zecca L, Smirne S (1982) Decreased CSF concentrations of homovanillic acid and gamma-aminobutyric acid in Alzheimer's disease. Arch Neurol 39:709–712Google Scholar
  7. Bartus RT, Dean RL, Sherman KA, Friedman E, Beer B (1981) Profound effects of combining choline and piracetam on memory enhancement and cholinergic function in aged rats. Neurobiol Aging 2:105–111Google Scholar
  8. Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417Google Scholar
  9. Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to the cerebral cortex (nucleus basalis coeruleus) in senile dementia. Neurology 32:164–168Google Scholar
  10. Brinkman SD, Pomara N, Goodnick PJ, Barnett N, Domino EF (1982a) A dose-ranging study of lecithin in the treatment of primary degenerative dementia (Alzheimer's disease). J Clin Psychopharmacol 2:281–285Google Scholar
  11. Brinkman SD, Smith RC, Meyer JS, Shaw T, Gordon J, Vroulis G, Allen R (1982b) Lecithin and memory training in suspected Alzheimer's disease. J Gerontol 37:4–9Google Scholar
  12. Corona GL, Frattini P, Bonferoni B, Santagostino G (1977) A semiautomated fluorimetric determination of plasma catecholamines. Farm Ed Prat 32:53–64Google Scholar
  13. Corona GL, Santagostino G, Frattini P, Cucchi ML, Zerbi F, Tosca P, Savoldi F (1983) Preliminary data on monoamine metabolite levels in cerebrospinal fluid and in urine during therapy in dementia. IRCS Med Sci 11:923–924Google Scholar
  14. Cutler NR, Haxby J, Kay AD, Narang PK, Lesko LJ, Costa JL, Ninos M, Linnoila M, Potter WZ, Renfrew JW, Moore AM (1985) Evaluation of zimeldine in Alzheimer's disease. Cognitive and biochemical measures. Arch Neurol 42:744–748Google Scholar
  15. De Renzi E (1977) Le amnesie. In: Bisiach E (ed) Neuropsicologia clinica. Angeli, Milan, pp 199–246Google Scholar
  16. Ennaceur A, Delacour J (1987) Effect of combined or separate administration of piracetam and choline on learning and memory in the rat. Psychopharmacology 92:58–67Google Scholar
  17. Etienne P, Dastoor D, Gauthier S, Ludwick R, Collier B (1981) Alzheimer disease: lack of effect of lecithin treatment for 3 months. Neurology 31:1552–1554Google Scholar
  18. Ferris SH, Sathananthan G, Reisberg G, Gershon S (1979) Long-term choline treatment of memory-impaired elderly patients. Science 205:1039–1040Google Scholar
  19. Ferris SH, Reisberg B, Crook T, Friedman E, Schneck MK, Mir P, Sherman KA, Corwin J, Gershon S, Bartus RT (1982) Pharmacologic treatment of senile dementia: choline,l-DOPA, piracetam, and choline plus piracetam. In: Corkin S (ed) Alzheimer's disease, vol 19 (Series: Aging). Raven Press, New York, pp 475–481Google Scholar
  20. Frattini P, Santagostino G, Cucchi ML, Corona GL, Schinelli S (1982) 3-methoxy-4-hydroxyphenylglycol in human cerebrospinal fluid. Clin Chim Acta 125:97–105Google Scholar
  21. Frattini P, Santagostino G, Schinelli S, Cucchi ML, Corona GL (1983) Assay of urinary vanilmandelic, homovanillic, and 5-hydroxyindole acetic acids by liquid chromatography with electrochemical detection. J Pharmacol Methods 10: 193–198Google Scholar
  22. Friedman E, Sherman KA, Ferris SH, Reisberg B, Bartus RT, Schneck MK (1981) Clinical response to choline plus piracetam in senile dementia: relation to red-cell choline levels. N Engl J Med 304:1490–1491Google Scholar
  23. Giurgea CE, Debruyne H, Pille J (1986) Target symptoms and experimental basis of the nootropic therapy. In: Bes A (ed) Senile dementias: early detection. Libbey, p 367Google Scholar
  24. Gottfries CG (1983) Biochemical changes in blood and cerebrospinal fluid. In: Reisberg B (ed) Alzheimer's disease. The standard reference. The Free Press, New York, pp 122–130Google Scholar
  25. Gottfries CG (1987) Pharmacology of mental aging and dementia disorders. Clin Neuropharmacol 10:313–329Google Scholar
  26. Gottfries CG, Bartfai T, Carlsson A, Eckernas SA, Svennerholm L (1985) Multiple biochemical deficits in both gray and white matter of Alzheimer brains. Prog Neuropsychopharmacol Biol Psychiatry 10:405–413Google Scholar
  27. Hachinski VC, Iliff LD, Zilhaka E, Du Boulay GH, McAllister VL, Marshall J, Russel RWR, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637Google Scholar
  28. Hughes CP, Berg L, Danziger WL, Cohen LA, Martin RA (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572Google Scholar
  29. Kaye JA, May C, Daly E, Atack JR, Sweeney DJ, Luxenberg JS, Kay AD, Kaufman S, Milstein S, Friedland RP, Rapoport SI (1988) Cerebrospinal fluid monoamine markers are decreased in dementia of the Alzheimer type with extrapyramidal features. Neurology 38:554–557Google Scholar
  30. Kazdova E, Bohac O, Dolezal V, Faber J, Slanska J, Tucek S (1984) Treatment of dementia with high doses of lecithin and piracetam. Activ Nerv Super (Praha) 26:244–245Google Scholar
  31. Kopin IJ (1985) Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev 37:333–364Google Scholar
  32. Koyama E, Mineglshl A, Ishizaki T (1988) Simultaneous determination of four monoamine metabolites and serotonin in cerebrospinal fluid by “high-performance” liquid chromatography with electrochemical detection; application for patients with Alzheimer's disease. Clin Chem 34:680–684Google Scholar
  33. Lake CR, Ziegler MG, Kopin IJ (1976) Use of plasma norepinephrine for evaluation of sympathetic neuronal function in man. Life Sci 18:1315–1326Google Scholar
  34. Mann DMA, Yates PO, Hawkes J (1982) The noradrenergic system in Alzheimer and multi-infarct dementias. J Neurol Neurosurg Psychiatry 45:113–119Google Scholar
  35. Palmer A, Sims NR, Bowen DM, Neary D, Palo J, Wikstrom J, Davison AN (1984) Monoamine metabolite concentrations in lumbar cerebrospinal fluid of patients with histologically verified Alzheimer's dementia. J Neurol Neurosurg Psychiatry 47:481–484Google Scholar
  36. Platel A, Jalfre M, Pawelec C, Roux S, Porsolt R (1984) Habituation of exploration activity in mice: effects of combination of piracetam and choline on memory processes. Pharmacol Biochem Behav 21:209–212Google Scholar
  37. Pomara N, Reisberg B, Ferris SH, Gershon S (1981) Drug treatment of cognitive decline. In: Maletta GJ, Pirozollo FJ (eds) Advances in neurogerontology, vol 2. Praeger, New YorkGoogle Scholar
  38. Raskind MA, Peskind ER, Halter JB, Jimerson DC (1984) Norepinephrine and MHPG levels in CSF and plasma in Alzheimer's disease. Arch Gen Psychiatry 41:343–346Google Scholar
  39. Redmond DE, Katz MM, Maas JW, Swann A, Casper R, Davis JM (1986) Cerebrospinal fluid amine metabolites. Relationship with behavioral measurements in depressed, manic, and healthy control subjects. Arch Gen Psychiatry 43:938–947Google Scholar
  40. Reisberg G, Ferris SH, Schneck M (1981) Clinical cognitive effects of piracetam. Proceedings of the 3rd World Congress of Biological Psychiatry, Stockholm, June 28–July 3Google Scholar
  41. Rossor M, Iversen LL (1986) Non-cholinergic neurotransmitter abnormalities in Alzheimer's disease. Br Med Bull 42:70–74Google Scholar
  42. Santagostino G, Frattini P, Schinelli S, Cucchi ML, Corona GL (1982) Urinary 3-methoxy-4-hydroxyphenylglycol determination using reversed-phase chromatography with amperometric detection. J Chromatogr 233:89–95Google Scholar
  43. Seeldrayers P, Messina D, Desmedt D, Dalesio O, Hildebrand J (1985) CSF levels of neurotransmitters in Alzheimer-type dementia. Effects of ergoloid mesylate. Acta Neurol Scand 71:411–414Google Scholar
  44. Siever LJ, Uhde TW, Jimerson DC, Lake CR, Kopin IJ, Murphy DL (1986) Indices of noradrenergic output in depression. Psychiatr Res 19:59–73Google Scholar
  45. Smith RC, Vroulis G, Johnson R, Morgan R (1984) Comparison of therapeutic response to long-term treatment with lecithin versus piracetam plus lecithin in patients with Alzheimer's disease. Psychopharmacol Bull 20:542–545Google Scholar
  46. Soininen H, MacDonald E, Rekonen M, Riekkinen PJ (1981) Homovanillic acid and 5-hydroxyindoleacetic acid levels in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Acta Neurol Scand 64:101–107Google Scholar
  47. Stirling Meyer J, Welch MA, Deshmukh VD, Perez FI, Jacob RH, Haufrect DB, Mathew NT, Morrell RM (1977) Neurotransmitter precursor amino acids in the treatment of multi-infarct dementia and Alzheimer's disease. J Am Geriatr Soc 25:289–298Google Scholar
  48. Tyrrell P, Hardy J, Rossor M (1987) Tetrahydroaminoacridine and Alzheimer's disease. Lancet I:444Google Scholar
  49. Vandel S, Vandel B, Bonin B, Camejo Z, Sandoz M, Allers G, Volmat R (1985) Biological markers in depression: monoamine metabolites in urine of depressed patients and normal subjects. Pharmacopsychiatry 18:347–350Google Scholar
  50. Volicer L, Direnfeld LK, Langlais PJ, Freedman M, Bird ED, Albert ML (1985) Catecholamine metabolites and cyclic nuceotides in cerebrospinal fluid in dementia of Alzheimer type. J Gerontol 40:708–713Google Scholar
  51. Wester P, Eriksson S, Forsell A, Puu G, Adolfsson R (1988) Monoamine metabolite concentrations and cholinesterase activities in cerebrospinal fluid of progressive dementia patients: relation to clinical parameters. Acta Neurol Scand 77:12–21Google Scholar
  52. Wood PL, Etienne P, Sal S, Gauthier S, Cajal S, Nair NPV (1982) Reduced cerebrospinal fluid somatostatin levels in Alzheimer's disease. Life Sci 31:2073–2079Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • G. L. Corona
    • 1
  • M. L. Cucchi
    • 1
  • P. Frattini
    • 1
  • G. Santagostino
    • 1
  • S. Schinelli
    • 1
  • A. Romani
    • 2
  • A. Pola
    • 2
  • F. Zerbi
    • 2
  • F. Savoldi
    • 2
  1. 1.Institute of PharmacologyUniversity of PaviaPaviaItaly
  2. 2.Department of NeurologyUniversity of PaviaPaviaItaly

Personalised recommendations