Annali di Matematica Pura ed Applicata

, Volume 171, Issue 1, pp 205–273 | Cite as

Quaternionic structures on a manifold and subordinated structures

  • D. V. Alekseevsky
  • S. Marchiafava
Article

Keywords

Quaternionic Structure Subordinate Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. V. Alekseevsky,Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR-Izv.,9 (1975), pp. 297–339.Google Scholar
  2. [2]
    D. V. Alekseevsky,Conformai mappings of G-structures, Funct. Anal. Appl.,22 (1988), pp. 311–313.Google Scholar
  3. [3]
    D. V.Alekseevsky - M. M.Graev,G-structures of twistor type, Preprint Dip. Mat. Univ. «La Sapienza», Roma (1991);J. Geom. Phys.,10 (1993) no. 3, pp. 203–229.Google Scholar
  4. [4]
    D. V. Alekseevsky -S. Marchiafava,Quaternionic-like structures on a manifold. — Note I. 1-integrability and integrability conditions. — Note II. Automorphism groups and their interrelations, Rend. Mat. Acc. Lincei, s. 9, v. 4 (1993), pp. 43–52, 53–61.Google Scholar
  5. [5]
    D. V. Alekseevsky -S. Maechiafava,A report on quaternionic-like structures on a manifold, inProceedings of the International Workshop on Differential Geometry and its Applications, Bucarest, July 25–30 1993, Scientific Bulletin UPB, 55, no. 3–4 (1993), pp. 9–34.Google Scholar
  6. [6]
    D. V. Alekseevsky -S. Marchiafava,Almost quaternionic Hermitian and quasi-Kähler manifolds, inProceedings of the International Workshop on complex structures and vector fields,Sofia,August 20–25 1992, pp. 150–175, Ed. World Scientific, World Scientific, Singapore (1994).Google Scholar
  7. [7]
    M.Berger,Les groupes d'holonomie homogène des variétés affines et des variétés riemanniennes, Bull. Soc. Math. France (1955), pp. 279–330.Google Scholar
  8. [8]
    D. Bernard,Sur la géométrie différentielle des G-structures, Ann. Inst. Fourier (Grenoble),10 (1960), pp. 151–270.Google Scholar
  9. [9]
    A. Besse,Einstein Manifolds, Ergebnisse der Math., 3 Folge, Band 10, Springer-Verlag, Berlin and New York (1987).Google Scholar
  10. [10]
    D.Blair,Contact Manifolds in Riemannian Geometry, Lectures Notes in Math., n. 509.Google Scholar
  11. [11]
    E. Bonan,Sur les G-structures de type quaternionien, Cah. Topol. Géom. Diff.,9 (1967), pp. 389–461.Google Scholar
  12. [12]
    S. S.Chern,On a generalisation of Kähler geometry, inSymposium in Honor of S. Lefschetz on Algebraic Geometry and Topology, Princeton University Press (1957) (Princeton Mathematical Series,18), pp. 103–121.Google Scholar
  13. [13]
    S. S. Chern,The geometry of G-structures, Bull. Amer. Math. Soc.,72 (1966), pp. 167–219.Google Scholar
  14. [14]
    S. Fujimura,Q-connections and their changes on almost quaternion manifolds, Hokkaido Math. J.,5 (1976), pp. 239–248.Google Scholar
  15. [15]
    R. S. Kulkarni,On the principle of uniformisation, J. Diff. Geom.,13 (1978), pp. 109–138.Google Scholar
  16. [16]
    C. Le Brun -S. Salamon,Strong rigidity of positive quaternionic-Kähler manifolds, Invent. Math.,118 (1994), pp. 109–132.Google Scholar
  17. [17]
    E. Martinelli,Variétés à structure quaternionienne généralisée, Rev. Roum. Math. Pures Appl., Tome X, n. 7 (1965), pp. 915–922.Google Scholar
  18. [18]
    E. Musso,On the transformation group of a quaternion manifold, Boll. U.M.I., (7), 6-B (1992), pp. 67–78.Google Scholar
  19. [19]
    M. Obata,Affine connections on Manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math.,26 (1956), p. 43.Google Scholar
  20. [20]
    V. Oproiu,Almost quaternal structures, An. st. Univ. Iazi,23 (1977), pp. 287–298.Google Scholar
  21. [21]
    V. Oproiu,Integrability of almost quaternal structures, An. st. Univ. «Al. I. Cuza» Iazi,30 (1984), pp. 75–84.Google Scholar
  22. [22]
    P. Piccinni,On the infinitesimal automorphisms of quaternionic structures, J. Math. Pures Appl.,72 (1993), pp. 593–605.Google Scholar
  23. [23]
    P. Piccinni -G. Romani,A generalisation of symplectic Pontrjagin classes to vector bundles with structure group Sp(n)·Sp(1), Ann. Mat. Pura Appl. (IV),33 (1983), pp. 1–18.Google Scholar
  24. [24]
    M. Pontecorvo,Complex structures on quaternionic manifolds, Diff. Geom. Appl.,4 (1994), pp. 163–177.Google Scholar
  25. [25]
    S. Salamon,Differential geometry of quaternionic manifolds, Ann. Scient. Ec. Norm. Sup., 4ème série,19 (1986), pp. 31–55.Google Scholar
  26. [26]
    S. Salamon,Riemannian Geometry and Holonomy Groups, Ed. Longman Scientific & Technical, UK (1989).Google Scholar
  27. [27]
    S.Sternberg,Lectures in Differential Geometry, Prentice-Hall (1964).Google Scholar
  28. [28]
    A. Swann,HyperKähler and quaternionic Kähler geometry, Math. Ann.,289 (1991), pp. 421–450.Google Scholar
  29. [29]
    K. Yano -M. Ako,Integrability conditions for almost quaternionic structures, Hokkaido Math. J.,1 (1972), pp. 63–86.Google Scholar
  30. [30]
    K. Yano -M. Ako,An affine connection in an almost quaternionic manifold, J. Diff. Geom.,8 (1973), pp. 341–347.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1996

Authors and Affiliations

  • D. V. Alekseevsky
    • 1
  • S. Marchiafava
    • 2
  1. 1.Scientific Center «Sophus Lie» (Moscow branch)MoscowRussia
  2. 2.Dipartimento di Matematica, Istituto «Guido Castelnuovo»Universitá di Roma «La Sapienza»RomaItalia

Personalised recommendations