Advertisement

Annali di Matematica Pura ed Applicata

, Volume 171, Issue 1, pp 159–179 | Cite as

On the Cauchy problem in complex analysis

  • C. Denson Hill
  • Mauro Nacinovich
Article

Keywords

Cauchy Problem Complex Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AjHe]
    R. A. Ajrapetyan -G. M. Henkin,Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR functions I, II, Usp. Mat. Nauk,39, n. 3 (1984), pp. 39–106; English transl.: Russ. Math. Surv.,39, n. 3 (1984), pp. 41–118; Mat. Sb. Nov. Ser.,127, n. 1 (1985), pp. 92–112; English transl.: Math. USSR, Sb.,55, n. 1 (1986), pp. 91–111.Google Scholar
  2. [AFN]
    A. Andreotti -G. A. Fredricks -M. Nacinovich,On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Scuola Norm. Sup. Pisa,8 (1981), pp. 365–404.Google Scholar
  3. [AG]
    A. Andreotti -H. Grauert,Théorèmes des finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France,90 (1962), pp. 193–259.Google Scholar
  4. [AH]
    A. Andreotti -C. D. Hill,E. E. Levi convexity and the Hans Lewy problem I, II, Ann. Scuola Norm. Sup. Pisa,26 (1972), pp. 325–363, 747–806.Google Scholar
  5. [AHLM]
    A. Andreotti -C. D. Hill -S. Lojasiewicz -B. MacKichan,Complexes of partial differential operators: The Mayer-Vietoris sequence, Invent. Math.,26 (1976), pp. 43–86.Google Scholar
  6. [BP]
    A. Boggess -J. Polking,Holomorphic extension of CR functions, Duke Math. J.,49 (1982), pp. 757–784.Google Scholar
  7. [BT]
    M. S. Baouendi -F. Treves,A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. Math.,113 (1981), pp. 387–421.Google Scholar
  8. [G]
    R. Godement,Topologie algébrique et théorie des faisceaux, Hermann, Paris (1958).Google Scholar
  9. [HN1]
    C. D. Hill -M. Nacinovich,Pseudoconcave CR manifolds, Dipartimento di Matematica, Pisa (Feb. 1993), pp. 1–36;Complex Analysis and Geometry, Lecture Notes in Pure and Appl. Math., v.173, pp. 275–297, Marcel Dekker, New York (1996).Google Scholar
  10. [HN2]
    C. D. Hill -M. Nacinovich,Aneurysms of pseudoconcave CR manifolds, Dipartimento di Matematica, Pisa, 1.83 (745) (Jun. 1993), pp. 1–22;Math. Z.,220 (1995), pp. 347–367.Google Scholar
  11. [HN3]
    C. D. Hill -M. Nacinovich,Duality and distribution cohomology of CR manifolds, Dipartimento di Matematica, Pisa (Feb. 1994), pp. 1–26; Ann. Scuola Norm. Sup. Pisa,22 (1995), pp. 315–339.Google Scholar
  12. [HN4]
    C. D. Hill -M. Nacinovich,The topology of Stein CR manifolds and the Lefschetz theorem, Ann. Inst. Fourier Grenoble,43, 2 (1993), pp. 459–468.Google Scholar
  13. [L]
    H. Laufer,On the infinite dimensionality of the Dolbeauit cohomology groups, Proc. AMS,52 (1975), pp. 293–296.Google Scholar
  14. [L-TL1]
    C. Laurent-Thiébaut -J. Leiterer,Théorie d'Andreotti-Grauert pour les hypersurfaces réelies d'une variété analytique complexe, C. R. Acad. Sci. Paris, série I,316 (1993), pp. 891–894.Google Scholar
  15. [L-TL2]
    C. Laurent-Thiébaut -J. Leiterer,Uniform estimates for the Cauchy-Riemann equations on q-pseudoconvex wedges, Ann. Inst. Frourier Grenoble,43 (1993), pp. 383–436.Google Scholar
  16. [L-TL3]
    C.Laurent-Thiébaut - J.Leiterer,Andreotti-Grauert theory on real hypersurfaces, I. The q-convex case, Prép. Inst. Fourier Grenoble,253 (1993).Google Scholar
  17. [L-TL4]
    C.Laurent-Thiébaut - J.Leiterer,On the Cauchy-Riemann equations in q-concave wedges, Prép. Inst. Fourier Grenoble,289 (1994).Google Scholar
  18. [L-TL5]
    C.Laurent-Thiébaut - J.Leiterer,Andreotti-Grauert theory on real hypersurfaces, II. The q-concave case, Prép. Inst. Fourier Grenoble,280 (1994).Google Scholar
  19. [MN]
    C. Medori -M. Nacinovich,Pluriharmonic functions on abstract CR manifolds, Dipartimento di Matematica, Pisa, 1.78 (727) (Mar. 1993), pp. 1–16.Google Scholar
  20. [N1]
    M. Nacinovich,Poincaré lemma for tangential Cauchy-Riemann complexes, Math. Ann.,268 (1984), pp. 449–471.Google Scholar
  21. [N2]
    M. Nacinovich,On strict Levi q-convexity and q-concavity of domains with piecewise smooth boundaries, Math. Ann.,281 (1988), pp. 459–482.Google Scholar
  22. [N3]
    M.Nacinovich,On a theorem of Ajrapetyan and Henkin, Seminari di Geometria 1988–1991, Univ. Bologna, pp. 99–135.Google Scholar
  23. [N4]
    M. Nacinovich,Cauchy problem for overdetermined systems, Ann. Mat. Pura Appl.,156 (1990), pp. 265–321.Google Scholar
  24. [N5]
    M. Nacinovich,Overdetermined hyperbolic systems on l.e. convex sets, Rend. Sem. Mat. Univ. Padova,83 (1990), pp. 107–132.Google Scholar
  25. [NV]
    M. Nacinovich -G. Valli,Tangential Cauchy-Riemann complexes on distributions, Ann. Mat. Pura Appl.,146 (1987), pp. 123–160.Google Scholar
  26. [T]
    J. C. Tougeron,Ideaux de fonctions differentiables, Springer, Berlin, Heidelberg, New York (1972).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1996

Authors and Affiliations

  • C. Denson Hill
    • 2
  • Mauro Nacinovich
    • 1
  1. 1.Dipartimento di MatematicaPisa
  2. 2.Department of MathematicsSUNY at Stone BrookStone BrookUSA

Personalised recommendations