Annali di Matematica Pura ed Applicata

, Volume 171, Issue 1, pp 41–62 | Cite as

Strongly continuous dual semigroups

  • Herbert Amann
  • Joachim Escher


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Amann,Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math.,45 (1982), pp. 225–254.Google Scholar
  2. [2]
    H. Amann,Dynamic theory of quasilinear parabolic systems. —III:Global existence, Math. Z.,202 (1989), pp. 219–250;Erratum,205 (1990), p. 331.Google Scholar
  3. [3]
    H. Amann,Highly degenerate quasilinear parabolic systems, Ann. Scuola Norm. Sup. Pisa, Ser. IV,18 (1991), pp. 135–166.Google Scholar
  4. [4]
    H. Amann,Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel (1995).Google Scholar
  5. [5]
    H. Amann,Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, inH. Triebel,H. J. Schmeißer, editors,Function Space, Differential Operators and Nonlinear Analysis, Teubner, Stuttgart, Leipzig (1993), pp. 9–126.Google Scholar
  6. [6]
    H. Amann,Semigroups and nonlinear evolution equations, Lin. Alg. Appl.,84 (1986), pp. 3–32.Google Scholar
  7. [7]
    W. Arendt -Ch. J. K. Batty,L'holomorphie du semi-groupe engendré par le Laplacien Dirichlet sur L1(Ω), C. R. Acad. Sc. Paris, Ser I,315 (1992), pp. 31–35.Google Scholar
  8. [8]
    H. Brézis -W. A. Strauss,Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan,25 (1973), pp. 565–590.Google Scholar
  9. [9]
    Ph. Clément - H. J. A. M. Heijmans et al., One-Parameter Semigroups, North-Holland CWI Monograph, Amsterdam (1987).Google Scholar
  10. [10]
    G. Da Prato -E. Sinestrari,Differential operators with non dense domain, Ann. Scuola Norm. Sup. Pisa,14 (1987), pp. 285–344.Google Scholar
  11. [11]
    R. Dautray -J.-L. Lions,Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin (1990).Google Scholar
  12. [12]
    E. B. Davies,Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge (1989).Google Scholar
  13. [13]
    E. B. Davies,One-Parameter Semigroups, Academic Press, London (1980).Google Scholar
  14. [14]
    G. Di Blasio,Analytic semigroups generated by elliptic operators in L 1 and parabolic equations, Osaka Math. J.,28 (1991), pp. 367–384.Google Scholar
  15. [15]
    G. Di Blasio,Characterization of interpolation spaces and regularity properties for holomorphic semigroups, Semigroup Forum,38 (1989), pp. 179–187.Google Scholar
  16. [16]
    J.Escher,The Dirichlet-Neumann operator on continuous functions, Ann. Scuola Norm. Sup. Pisa, to appear (1994).Google Scholar
  17. [17]
    J. Escher,Nonlinear elliptic systems with dynamic boundary conditions, Math. Z.,210 (1992), pp. 413–439.Google Scholar
  18. [18]
    J. Escher,Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Diff. Equ.,18 (1993), pp. 1309–1364.Google Scholar
  19. [19]
    H. O. Fattorini,The Cauchy Problem, Addison-Wesley, Reading, Mass. (1983).Google Scholar
  20. [20]
    D. Guidetti,On elliptic systems in L 1, Osaka Math. J.,30 (1993), pp. 397–429.Google Scholar
  21. [21]
    E. Hewitt -K. Stromberg,Real and Abstract Analysis, Springer-Verlag, Berlin (1965).Google Scholar
  22. [22]
    E. Hille -R. S. Phillips,Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, R.I. (1957).Google Scholar
  23. [23]
    T. Hintermann,Evolution equations with dynamic boundary conditions, Proc. Royal Soc. Edinburgh,113 A (1989), pp. 43–60.Google Scholar
  24. [24]
    D. Kinderlehrer -G. Stampacchia,An Introduction to Variational Inequalities and Their Applications, Academic Press, New York (1980).Google Scholar
  25. [25]
    G. Lumer -L. Paquet,Semi-groupes holomorphes et équations d'évolution, C. R. Acad. Sc. Paris, Sér A,24 (1977), pp. 237–240.Google Scholar
  26. [26]
    A. Lunardi,Analytic Semigroups and Optimal Regularity in Parabolic Equations, Birkhäuser, Basel (1994).Google Scholar
  27. [27]
    Z.-M. Ma -M. Röckner,Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, Berlin (1992).Google Scholar
  28. [28]
    E.-M.Ouhabaz,Gaussian estimates and holomorphy of semigroups, preprint (1993).Google Scholar
  29. [29]
    E.-M.Ouhabatz,Invariance of closed convex sets and domination criteria for semigroups, preprint (1993).Google Scholar
  30. [30]
    E.-M. Ouhabaz,Proptiétés d'ordre et de contractivité des semi-groupes avec applications aux opérateurs elliptiques, Thèse. Univ. de Franche-Comté, Besançon (1992).Google Scholar
  31. [31]
    D. G. Park -H. Tanabe,On the asymptotic behavior of solutions of linear parabolic equations in L1-space, Ann. Scuola Norm. Sup. Pisa, Ser. IV,14 (1987), pp. 587–612.Google Scholar
  32. [32]
    A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983).Google Scholar
  33. [33]
    R. S. Phillips,The adjoint semigroup, Pacific J. Math.,5 (1955), pp. 269–283.Google Scholar
  34. [34]
    M.Reed - B.Simon,Methods of Modern Mathematical Physics, I–IV, Academic Press (1972–1979).Google Scholar
  35. [35]
    H. B. Stewart,Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc.,199 (1974), pp. 141–162.Google Scholar
  36. [36]
    H. B. Stewart,Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc.,259 (1980), pp. 299–310.Google Scholar
  37. [37]
    H. Tanabe,Equations of Evolution, Pitman, London (1979).Google Scholar
  38. [38]
    H. Tanabe,On semilinear equations of elliptic and parabolic type, inH. Fujita, editor,Functional Anal. and Num. Anal., Japan-France Seminar, Tokyo and Kyoto 1976, Japan Society for Prom. of Science (1978), pp. 455–463.Google Scholar
  39. [39]
    H. Triebel,Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam (1978).Google Scholar
  40. [40]
    V. Vespri,Analytic semigroups generated by ultraweak elliptic operators, Proc. Royal Soc. Edinburgh,119 (1991), pp. 87–106.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1996

Authors and Affiliations

  • Herbert Amann
    • 1
  • Joachim Escher
    • 2
  1. 1.Mathematisches InstitutUniversität ZürichZürichSwitzerland
  2. 2.Mathematisches InstitutUniversität BaselBaselSwitzerland

Personalised recommendations