Advertisement

Annali di Matematica Pura ed Applicata

, Volume 168, Issue 1, pp 189–203 | Cite as

Some inclusion theorems for Orlicz and Musielak-Orlicz type spaces

  • Carlo Bardaro
  • Gianluca Vinti
Article

Keywords

Type Space Inclusion Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Bardaro -G. Vinti,On approximation properties of certain non convolution integral operators, J. Approx. Theory,62, No. 3, (1990), pp. 358–371.Google Scholar
  2. [2]
    C. Bardaro -G. Vinti,Modular estimates of integral operators with homogeneous kernel in Orlicz type spaces, Results Math.,19 (1991), pp. 46–53.Google Scholar
  3. [3]
    C. Bardaro -G. Vinti,Some estimates of certain integral operators in generalized fractional Orlicz classes, Numer. Funct. Anal. Optimiz.,12 (1991), pp. 443–453.Google Scholar
  4. [4]
    C. Bardaro -G. Vinti,Modular convergence theorems in fractional Musielak-Orlicz spaces, Z. Analysis Anw.,13 (1994), pp. 155–170.Google Scholar
  5. [5]
    P. L. Butzer -R. J. Nessel,Fourier Analysis and Approximation, Academic Press, New York-London (1971).Google Scholar
  6. [6]
    P. L. Butzer -F. Fehér,Generalized Hardy and Hardy-Littlewood inequalities in rearrangement-invariant spaces, Comment. Math. Prace Univ. Tomus specialis in Honorem L. Orlicz I (1978), pp. 41–64.Google Scholar
  7. [7]
    E. T. Copson,Some integral inequalities, Proc. Roy. Soc. Edimburgh, Sect. A,75 (1975/76), pp. 157–164.Google Scholar
  8. [8]
    F. Fehér,A note on a paper of E.R. Love, Bull. Austral. Math. Soc.,19 (1978), pp. 67–75.Google Scholar
  9. [9]
    F. Fehér,A generalized Schur-Hardy inequality on normed Kothe spaces, General Inequalities II, (Proc. 2nd. Int. Conf. on General Inequalities, Oberwolfach, 1978), Birkhauser, Basel, (1980), pp. 277–285.Google Scholar
  10. [10]
    T. M. Flett,A note on some inequalities, Proc. Glasgow Math. Assoc.,4 (1958), pp. 715.Google Scholar
  11. [11]
    W. M. Kozlowski,Modular Function Spaces, Pure Appl. Math. Marcel Dekker, New York and Basel (1988).Google Scholar
  12. [12]
    E. R. Love,Some inequalities for fractional integrals, Linear Spaces and Approximation, (Proc. Conf. Math. Research Institute Oberwolfach, 1977, 177–184), International Series of Numerical Mathematics,40, Birkhauser Verlag, Basel, Stuttgart (1978).Google Scholar
  13. [13]
    E. R.Love,Links between some generalizations of Hardy's integral inequality, General inequalities IV (Proc. 4th International Conference on General Inequalities, Oberwolfach, Basel, 1984), pp. 47–57.Google Scholar
  14. [14]
    J. Mikusinski,Operational Calculus, Pergamon Press, Warszava (1959).Google Scholar
  15. [15]
    H.Musielak - J.Musielak,An application of a Bernstein-type inequality for fractional derivatives to some problems of modular spaces, Constructive Function Theory '77, Sofia (1980), pp. 427–432.Google Scholar
  16. [16]
    J.Musielak,Orlicz spaces and modular spaces, Lecture Notes in Math.,1034, Springer-Verlag (1983).Google Scholar
  17. [17]
    K. B. Oldham -J. Spanier,The Fractional Calculus, Academic Press, New York (1974).Google Scholar
  18. [18]
    E. L. Radzhabov,On generalization of the operators of Fractional integration and differentiation, Applicable Analysis,45 (1992), pp. 229–242.Google Scholar
  19. [19]
    V. Zanelli,I polinomi di Stieltjes approssimanti in variazione di ordine non intero, Atti Sem. Mat. Fis. Univ. Modena,30 (1981), pp. 151–175.Google Scholar
  20. [20]
    V. Zanelli,Funzioni momenta convergenti dal basso in variazione di ordine non intero, Atti Sem. Mat. Fis. Univ. Modena,30 (1981), pp. 355–369.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1995

Authors and Affiliations

  • Carlo Bardaro
    • 1
  • Gianluca Vinti
    • 2
  1. 1.Dipartimento di MatematicaUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Dipartimento di Matematica ed ApplicazioniUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations