Algorithmica

, Volume 6, Issue 1–6, pp 597–619 | Cite as

Maximum queue size and hashing with lazy deletion

  • Claire M. Kenyon
  • Jeffrey Scott Vitter
Article

Abstract

We answer questions about the distribution of the maximum size of queues and data structures as a function of time. The concept of “maximum” occurs in many issues of resource allocation. We consider several models of growth, including general birth-and-death processes, the M/G/∞ model, and a non-Markovian process (data structure) for processing plane-sweep information in computational geometry, called “hashing with lazy deletion” (HwLD). It has been shown that HwLD is optimal in terms of expected time and dynamic space; our results show that it is also optimal in terms of expectedpreallocated space, up to a constant factor.

We take two independent and complementary approaches: first, in Section 2, we use a variety of algebraic and analytical techniques to derive exact formulas for the distribution of the maximum queue size in stationary birth-and-death processes and in a nonstationary model related to file histories. The formulas allow numerical evaluation and some asymptotics. In our second approach, in Section 3, we consider the M/G/∞ model (which includes M/M/∞ as a special case) and use techniques from the analysis of algorithms to get optimal big-oh bounds on the expected maximum queue size and on the expected maximum amount of storage used by HwLD in excess of the optimal amount. The techniques appear extendible to other models, such as M/M/1.

Key words

Queues Maximum Hashing with lazy deletion Data structures File histories Stacks Priority queues Linear lists Symbol tables Continued fractions Orthogonal polynomials Birth-and-death process M/M/∞ M/G/∞ Transforms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible Hashing—A Fast Access Method for Dynamic Files,ACM Transactions on Database Systems,4(3) (September 1979), 315–344.CrossRefGoogle Scholar
  2. P. Flajolet. Analyse d'algorithmes de manipulation d'arbres et de fichiers,Cahiers du Bureau Universitaire de Recherche Operationnelle,34–35 (1981), 1–209.Google Scholar
  3. P. Flajolet, J. Françon, and J. Vuillemin. Sequence of Operations Analysis for Dynamic Data Structures,Journal of Algorithms,1(2) (June 1980), 111–141.MATHCrossRefMathSciNetGoogle Scholar
  4. G. H. Gonnet. Expected Length of the Longest Probe Sequence in Hash Code Searching,Journal of the ACM,28(2) (April 1981), 289–304.MATHCrossRefMathSciNetGoogle Scholar
  5. S. Karlin and J. M. McGregor. Linear Growth Birth and Death Processes,Journal of Mathematics and Mechanics, 7(4) (1958).Google Scholar
  6. F. P. Kelly.Reversibility and Stochastic Networks, Series in Probability and Mathematical Statistics, Wiley, Chichester (1979).Google Scholar
  7. C. M. Kenyon and J. S. Vitter. General Methods for the Analysis of the Maximum Size of Dynamic Data Structures,SIAM Journal on Computing,20(3) (June 1991).Google Scholar
  8. L. Kleinrock,Queueing Systems, Vol. I, Wiley, New York (1975).MATHGoogle Scholar
  9. V. F. Kolchin, B. A. Sevast'yanov, and V. P. Chistyakov.Random Allocations, Winston, Washington (1978).Google Scholar
  10. J. Morrison, L. A. Shepp, and C. J.Van Wyk. A Queueing Analysis of Hashing with Lazy Deletion,SIAM Journal on Computing,16(6) (December 1987), 1155–1164.MATHCrossRefMathSciNetGoogle Scholar
  11. T. Ottmann and D. Wood. Space-Economical Plane-Sweep Algorithms,Computer Vision, Graphics, and Image Processing,34 (1986), 35–51.CrossRefGoogle Scholar
  12. G. Szegö.Orthogonal Polynomials, American Mathematical Society Colloquium Publication, Providence, RI (1939).Google Scholar
  13. T. G. Szymanski and C. J. Van Wyk. Space-Efficient Algorithms for VLSI Artwork Analysis,Proceedings of the 20th IEEE Design Automation Conference (June 1983), pp. 743–749.Google Scholar
  14. C. J. Van Wyk and J. S. Vitter. The Complexity of Hashing with Lazy Deletion,Algorithmica,1(1) (March 1986), 17–29.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Claire M. Kenyon
    • 1
  • Jeffrey Scott Vitter
    • 2
  1. 1.Laboratoire d'InformatiqueEcole Normale SupérieureParis Cedex 05France
  2. 2.Department of Computer ScienceBrown UniversityProvidenceUSA

Personalised recommendations