Advertisement

Annali di Matematica Pura ed Applicata

, Volume 163, Issue 1, pp 143–160 | Cite as

On the existence of global first integrals in the plane

  • Luisa Mazzi
  • Marco Sabatini
Article

Summary

A plane, autonomous, noncritical differential system x′=f(x) of classCk is given. Under a suitable «discreteness» hypothesis on the behavior of orbits, the exeistence of a global first integral as regular as the field (provided k ≠ ω)is proved.

Keywords

Differential System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ALGM]
    A. A.Andronov - E. A.Leontovich -I. I.Gordon - A. G.Maier,Qualitative Theory of Second Order Dynamic Systems, Israel Program for Scientific Translations (1971).Google Scholar
  2. [D]
    E. Digel, Über die Existenz von Integralen der partiellen Differentialgleichungf(x,y)(∂z/∂x)+g(x,y)(∂z/∂y)=0 i der Umgerbung eines singulären Punktes, Math. Zeit.,42 (1937), pp. 231–237.Google Scholar
  3. [F]
    R. Finn,On the uniformization of plane direction fields, and of second-order partial differential operators, Proc. Camb. Phil. Soc.,73 (1973), pp. 87–109.Google Scholar
  4. [K]
    E. Kamke, Über die partielle Differentialgleichungf(x,y)∂z/∂x+g(x,y)∂z/∂y=h(x,y), II, Math. Z.,42 (1936), pp. 287–300.Google Scholar
  5. [Ka]
    W. Kaplan,Regular curve-families filling the plane, I, Duke Math. J.,7 (1940), pp. 154–185.Google Scholar
  6. [M.1]
    L. Markus,Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc.,76 (1954), pp. 127–148.Google Scholar
  7. [M.2]
    L. Markus,Topological types of polynomial differential equations, Trans. Amer. Math. Soc.,171 (1972), pp. 157–178.Google Scholar
  8. [MS]
    L. Mazzi -M. Sabatini,A characterization of centres via first integrals, Journ. Diff. Eq.,76 (1988), pp. 222–237.Google Scholar
  9. [Mu.1]
    M. P. Muller,An analytic foliation of the plane without weak first integrals of class C 1 Bol. Soc. Mat. Mex.,21 (1972), pp. 1–5.Google Scholar
  10. [Mu.2]
    M. P. Muller,Quelques proprietes des feuilletages polinomiaux du plan, Bol. Soc. Mat. Mex.,21 (1972), pp. 6–14.Google Scholar
  11. [NS]
    V. V.Nemytskii - V. V.Stepanov,Qualitative Theory of Differential Equations, Pure and Applied Mathematics XXI, Wiley Interscience (1969).Google Scholar
  12. SC]
    G.Sansone - R.Conti,Equazioni differenziali non lineari, Cremonese (1956).Google Scholar
  13. [Wa]
    T. Wazewski, Sur une problème de caractère intégral relatif à l'équation∂z/∂x++Q(x,y)∂z/∂y=0, Mathematica Cluj,8 (1934), pp. 103–116.Google Scholar
  14. [Wh]
    H. Whitney,Regular families of curves, Ann. Math.,34, 2 (1933), pp. 244–270.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1993

Authors and Affiliations

  • Luisa Mazzi
    • 1
  • Marco Sabatini
    • 2
  1. 1.Dipartimento di MatematicaPolitecnico di TorinoTorino
  2. 2.Dipartimento di MatematicaUniversità di TrentoPovo

Personalised recommendations