Skip to main content
Log in

Optimal parallel algorithms for point-set and polygon problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we give parallel algorithms for a number of problems defined on point sets and polygons. All our algorithms have optimalT(n) * P(n) products, whereT(n) is the time complexity andP(n) is the number of processors used, and are for the EREW PRAM or CREW PRAM models. Our algorithms provide parallel analogues to well-known phenomena from sequential computational geometry, such as the fact that problems for polygons can oftentimes be solved more efficiently than point-set problems, and that nearest-neighbor problems can be solved without explicitly constructing a Voronoi diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aggarwal, B. Chazelle, L. Guibas, C. Ó'Dúnlaing, and C. Yap, Parallel Computational Geometry,Algorithmica, Vol. 3, No. 3, 1988, pp. 293–328.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. J. Atallah, R. Cole, and M. T. Goodrich, Cascading Divide-and-Conquer: A Technique for Designing Parallel Algorithms,SIAM J. Comput., Vol. 18, No. 3, 1989, pp. 499–532 (appeared in preliminary form inProc. 28th IEEE Symp. on Foundations of Computer Science, 1987, pp. 151–160).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. J. Atallah and M. T. Goodrich, Efficient Parallel Solutions to Some Geometric Problems,J. Parallel Distrib. Comput. Vol. 3, 1986, pp. 492–507.

    Article  Google Scholar 

  4. M. J. Atallah and M. T. Goodrich, Parallel Algorithms for Some Functions of Two Convex Polygons,Algorithmica, Vol. 3, No. 4, 1988, pp. 535–548.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. L. Bentley and M. I. Shamos, Divide-and-Conquer in Multidimensional Space,Proc. 8th ACM Symp. on Theory of Computing, 1976, pp. 220–230.

  6. G. Bilardi and A. Nicolau, Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for Shared Memory Machines, TR 86-769, Dept. of Computer Science, Cornell University, August 1986.

  7. A. Chow, Parallel Algorithms for Geometric Problems, Ph.D. thesis, Computer Science Dept., University of Illinois at Urbana-Champaign, 1980.

  8. R. Cole, Parallel Merge Sort,SIAM J. Comput., Vol. 17, No. 4, August 1988. pp. 770–785.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Edelsbrunner,Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  10. A. Fournier and Z. Kedem, Comments on the All-Nearest-Neighbor Problem for Convex Polygons,Inform. Process. Lett., Vol. 9, No. 3, 1979, pp. 105–107.

    MATH  Google Scholar 

  11. M. T. Goodrich, Efficient Parallel Techniques for Computational Geometry, Ph.D. thesis, Dept. of Computer Science, Purdue University, August 1987.

  12. M. T. Goodrich, Finding the Convex Hull of a Sorted Point Set in Parallel,Inform. Process. Lett., Vol. 26, December 1987, pp. 173–179.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. T. Goodrich, Triangulating a Polygon in Parallel,J. Algorithms, Vol. 10, 1989, pp. 327–351.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Guibas, L. Ramshaw, and J. Stolfi, A Kinetic Framework for Computational Geometry,Proc. 24th IEEE Symp. on Foundations of Computer Science, 1983, pp. 100–111.

  15. C. P. Kruskal, L. Rudolph, and M. Snir, The Power of Parallel Prefix,Proc. 1985 IEEE Internat. Conf. on Parallel Processing, pp. 180–185.

  16. R. E. Ladner and M. J. Fischer, Parallel Prefix Computation,J. Assoc. Comput. Mach., October 1980, pp. 831–838.

  17. D. T. Lee and F. P. Preparata, The All-Nearest-Neighbor Problem for Convex Polygons,Inform. Process. Lett., Vol. 7, No. 4, June 1978, pp. 189–192.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. T. Lee and F. P. Preparata, An Optimal Algorithm for Finding the Kernel of a Polygon,J. Assoc. Comput. Mach., Vol. 26, No. 3, July 1979, pp. 414–421.

    MathSciNet  Google Scholar 

  19. D. T. Lee and F. P. Preparata, Computational Geometry—A Survey,IEEE Trans. Comput., Vol. 33, No. 12, December 1984, pp. 872–1101.

    Article  MathSciNet  Google Scholar 

  20. F. P. Preparata and D. E. Muller, Finding the Intersection ofn Half-Spaces in TimeO(n logn), Theoret. Comput. Sci., Vol. 8, 1979, pp. 45–55.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  22. M. I. Shamos, Geometric Complexity,Proc. 7th ACM Symp. on Theory of Computing, 1975, pp. 224–233.

  23. M. I. Shamos and D. Hoey, Closest-Point Problems,Proc. 15th IEEE Symp. on Foundations of Computer Science, 1975, pp. 151–162.

  24. Y. Shiloach and U. Vishkin, Finding the Maximum, Merging, and Sorting in a Parallel Computation Model,J. Algorithms, Vol. 2, 1981, pp. 88–102.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. E. Tarjan and C. J. Van Wyk, AnO(n log logn)-Time Algorithm for Triangulating a Simple Polygon,SIAM J. Comput., Vol. 17, 1988, pp. 143–178.

    Article  MATH  MathSciNet  Google Scholar 

  26. G. T. Toussaint, Solving Geometric Problems with Rotating Calipers,Proc. IEEE MELECON '83, Athens, May 1983.

  27. H. Wagener, Optimally Parallel Algorithms for Convex Hull Determination, Manuscript, 1985.

  28. C. C. Yang and D. T. Lee, A Note on the All-Nearest-Neighbor Problem for Convex Polygons,Inform. Process. Lett, Vol. 8, No. 4, 1979, pp. 193–194.

    Article  MATH  MathSciNet  Google Scholar 

  29. C.-K. Yap, Parallel Triangulation of a Polygon in Two Calls to the Trapezoidal Map,Algorithmica, Vol. 3, No. 2, 1988, pp. 279–288.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Alok Aggarwal.

The research of R. Cole was supported in part by NSF Grants CCR-8702271, CCR-8902221, and CCR-8906949, by ONR Grant N00014-85-K-0046, and by a John Simon Guggenheim Memorial Foundation fellowship. M. T. Goodrich's research was supported by the National Science Foundation under Grant CCR-8810568 and by the National Science Foundation and DARPA under Grant CCR-8908092.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, R., Goodrich, M.T. Optimal parallel algorithms for point-set and polygon problems. Algorithmica 7, 3–23 (1992). https://doi.org/10.1007/BF01758749

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01758749

Key words

Navigation