Skip to main content
Log in

Application of the ferrocyanide-reduced osmium method for mineralizing cartilage: Further evidence for the enhancement of intracellular glycogen and visualization of matrix components

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The ferrocyanide-reduced osmium (FRO) fixation method was applied to neonatal mouse mandibular condylar cartilage for its processing for electron microscopy. The results were compared to those obtained by the conventional glutaraldehyde—osmium tetroxide fixation method. Three different stages in the life cycle of condylar cartilage cells were examined. FRO enabled the visualization of delicate fibrillar mesh in the matrix of all three zones of the cartilage, resulting in a dense appearance of the intercellular matrix. The classical stellate shape of matric granules seen in cartilage fixed with glutaraldehyde—osmium tetroxide was not observed in FRO-processed tissues. Chondrocytes that were FRO-processed almost entirely filled their lacunar space. In their pericellular area, fibrillar material and electron-dense aggregates could be demonstrated by the FRO method. As a conclusion of this study, it is recommended to supplement a conventional protocol with the FRO fixation method for routine and research purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AKISAKA, T. & SHIGENAGA, Y. (1983) Ultrastructure of growing epiphyseal cartilage processed by rapid freezing and freeze-substitution.J. Electron Microsc. (Tokyo) 32, 305–20.

    Google Scholar 

  • ANDERSON, H. C. & SAJDERA, S. W. (1971) The fine structure of bovine nasal cartilage.J. Cell Biol. 49, 650–63.

    Google Scholar 

  • ARSENAULT, L. A., OTTENSMEYER, P. F. & HEATH, B. I. (1988) An electron microscopic and spectroscopic study of murine epiphyseal cartilage: analysis of fine structure and matrix vesicles preserved by slam-freezing and freeze-substitution.J. Ultrastruct. Mol. Struct. Res. 98, 32–47.

    Google Scholar 

  • BRIGHTON, C. T. & HUNT, R. M. (1976) Histochemical localization of calcium in growth plate mitochondria and matrix vesicles.Fed. Proc. 35, 143–7.

    Google Scholar 

  • CARSON, F. L., DAVID, W. L., MATTHEWS, J. L. & MARTIN, J. H. (1978) Calcium localization in normal, rachitic, and D3-treated chicken epiphyseal chondrocytes utilizing potassium pyroantimonate—osmium tetroxide.Anat. Rec. 190, 23–40.

    Google Scholar 

  • COLTOFF-SCHILLER, B. & GOLDFISCHER, S. (1981) Glycosaminoglycans in the rat aorta: ultrastructural localization with toluidine blue and osmium-ferrocyanide procedures.Amer. J. Pathol. 105, 232–40.

    Google Scholar 

  • DAVIS, W. L., JONES, R. G., KNIGHT, J. P. & HAGLER, H. K. (1982) Cartilage calcification: an ultrastructural, histochemical, and analytical X-ray microprobe study of the zone of calcification in the normal avian epiphyseal growth plate.J. Histochem. Cytochem. 30, 221–34.

    Google Scholar 

  • DEBERNARD, B. (1982) Glycoproteins in the local mechanism of calcification.Clin. Orthop. 162, 233–44.

    Google Scholar 

  • DE BRUIJN, W. C. & DEN BREEJEN, P. (1976) Glycogen, its procedure which selectively contrasts glycogen. InFourth European Regional Conference on Electron Microscopy (edited by BOCCIARELLI, D. S.), Vol. II, pp. 5–11. Rome: Tipografia Polyglotta Vaticana.

    Google Scholar 

  • DE BRUIJN, W. C. & DEN BREEKJEN, P. (1976) Glycogen, its chemistry and morphological appearance in the electron microscope. III. Identification of the tissue ligands involved in the glycogen contrast-staining reaction with the osmium (VI)—iron (II) complex.Histochem. J. 8, 121–42.

    Google Scholar 

  • DE BRUIJN, W. C. & VAN BUITENEN, J. M. H. (1980) X-ray microanalysis of aldehyde-fixed glycogen contraststained by OsVI·FeII and OsVI·RuIV complexes.J. Histochem. Cytochem. 28, 1242–50.

    Google Scholar 

  • DVORAK, A. M., HAMMOND, M. E., DVORAK, H. F. & KARNOVSKY, M. H. (1972) Loss of cell surface-associated material from peritoneal exudate cells associated with lymphocyte-mediated inhibition of macrophage migration from capillary tubes.Lab. Invest. 27, 561–74.

    Google Scholar 

  • EGGLI, P. S., HERMANN, W., HUNZIKER, E. B. & SCHENK, R. K. (1985) Matrix compartments in the growth plate of the proximal tibia of rats.Anat. Rec. 211, 246–57.

    Google Scholar 

  • EINSTEIN, R., SORGENTE, N. & KUETTNER, K. E. (1971) Organization of extracellular matrix in epiphyseal growth plate.Amer. J. Pathol. 65, 515–18.

    Google Scholar 

  • ENGFELDT, B., HULTENLEY, K. & MULLER, M. (1986) Ultrastructure of hyaline cartilage.Acta Pathol. Microbiol. Immunol. Scand. [A] 94, 313–23.

    Google Scholar 

  • FARNUM, C. E. & WILSMAN, N. J. (1983) Pericellular matrix of growth plate chondrocytes: a study using postfixation with osmium-ferrocyanide.J. Histochem. Cytochem. 31, 765–75.

    Google Scholar 

  • FARNUM, C. E. & WILSMAN, N. J. (1987) Morphologic stages of the terminal hypertrophic chondrocyte of growth plate cartilage.Anat. Rec. 219, 221–32.

    Google Scholar 

  • HASCALL, G. K. (1980) Cartilage proteoglycans: comparison of sectioned and spread whole molecules.J. Ultrastruct. Res. 70, 369–75.

    Google Scholar 

  • HOWLETT, C. R. (1979) The fine structure of the proximal growth plate of the avian tibia.J. Anat. 128, 377–99.

    Google Scholar 

  • HUZIKER, E. B., HERRMANN, W. & SCHENK, R. K. (1982) Improved cartilage fixation by ruthenium hexamine trichloride (RHT): a prerequisite for morphometry in growth cartilage.J. Ultrastruct. Res. 81, 1–12.

    Google Scholar 

  • HUNZIKER, E. B., HERRMANN, W. & SCHENK, R. K. (1983) Ruthenium hexamine trichloride (RHT)-mediated interaction between plasmalemmal components and pericellular matrix proteoglycans is responsible for the preservation of chondrocyte plasma membranesin situ during cartilage fixation.J. Histochem. Cytochem. 31, 717–27.

    Google Scholar 

  • HUNZIKER, E. B. & SCHENK, K. R. (1984) Cartilage ultrastructure after high-pressure freezing, freeze-substitution, and low-temperature embedding. II. Intercellular matrix ultrastructure: preservation of proteoglycans in their natural state.J. Cell Biol. 98, 277–82.

    Google Scholar 

  • KARNOVSKY, M. J. (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy (abstract).J. Cell Biol. 54, 284.

    Google Scholar 

  • KASHIWA, H. K., LUCHTEL, D. L. & PARK, H. Z. (1975) Chondroitin sulfate and electron-lucent bodies in the pericellular rim about unshrunken hypertrophied chondrocytes of chick long bones.Anat. Rec. 183, 359–72.

    Google Scholar 

  • KHAN, T. A. & OVERTON, J. (1970) Lanthanum staining of developing chick cartilage and reaggregating cartilage cells.J. Cell Biol. 44, 433–8.

    Google Scholar 

  • LAROS, G. S. & COOPER, R. R. (1972) Electron microscopic visualization of proteinpolysaccharides.Clin. Orthop. Relat. Res. 84, 179–92.

    Google Scholar 

  • LEWINSON, D. & SILBERMANN, M. (1978) Chondrocyte involvement in condylar cartilage calcification utilizing potassium pyroantimonate—osmium tetroxide.Metab. Bone Dis. Relat. Res. 1, 243–50.

    Google Scholar 

  • LEWINSON, D. & SILBERMANN, M. (1982) Landmarks in chondrocyte differentiation and maturation as envisaged by changes in the distribution of calcium complexes: an ultrastructural—histochemical study.Metab. Bone Dis. Relat. Res. 4, 143–50.

    Google Scholar 

  • MATUKAS, V. J., PANNER, B. J. & ORBISON, J. L. (1967) Studies on ultrastructural identification and distribution of proteinpolysaccharide in cartilage matrix.J. Cell Biol. 32, 367–77.

    Google Scholar 

  • MAUPIN-SZAMIER, P. & POLLARD, T. D. (1978) Actin filament destruction by osmium tetroxide.J. Cell Biol. 77, 837–52.

    Google Scholar 

  • OI, T. & UTSUMI, N. (1980) Ultrastructure of hypertrophic chondrocytes of rat mandibular condyles using lanthanum-containing fixatives.Arch. Oral Biol. 25, 77–81.

    Google Scholar 

  • POLLARD, T. D. (1976) The role of actin in the temperaturedependent gelation and contraction of extracts ofAcanthamoeba.J. Cell Biol. 68, 579–601.

    Google Scholar 

  • RIEMERSA, J. C., ALSBACH, E. J. J. & DE BRUIJN, W. C. (1984) Chemical aspects of glycogen contrast-staining by potassium osmate.Histochem. J. 16, 123–36.

    Google Scholar 

  • SCHOFIELD, B. H., WILLIAMS, B. R. & DOTY, S. B. (1975) Alcian Blue staining for electron microscopy: application of the critical electrolyte concentration principle.Histochem. J. 7, 139–49.

    Google Scholar 

  • SHEPARD, N. & MITCHELL, N. (1976a) The localization of proteoglycan by light and electron microscopy using Safranin O.J. Ultrastruct. Res. 54, 451–60.

    Google Scholar 

  • SHEPARD, N. & MITCHELL, N. (1976b) Simultaneous localization of proteoglycan by light and electron microscopy using toluidine blue O: a study of epiphyseal cartilage.J. Histochem. Cytochem. 4, 621–9.

    Google Scholar 

  • SHEPARD, N. & MITCHELL, N. (1977) The use of ruthenium red andp-phenylenediamine to stain cartilage simultaneously for light and electron microscopy.J. Histochem. Cytochem. 25, 1163–8.

    Google Scholar 

  • SHEPARD, N. & MITCHELL, N. (1981) Acridine orange stabilization of glycosaminoglycans in beginning endochondral ossification.Histochemistry 70, 107–14.

    Google Scholar 

  • SHEPARD, N. & MITCHELL, N. (1985) Ultrastructural modifications of proteoglycans coincident with mineralization in local regions of rat growth plate.J. Bone Joint Surg. 67, 455–64.

    Google Scholar 

  • SILBERMANN, M. & LEWINSON, D. (1978) An electron microscopic study of the premineralizing zone of the condylar cartilage of the mouse mandible.J. Anat. 125, 55–70.

    Google Scholar 

  • SILBERMANN, M. REDDI, A. H. & HAND, A. R. (1987) Further characterization of the extracellular matrix in the mandibular condyle in neonatal mice.J. Anat. 151, 169–88.

    Google Scholar 

  • STAGNI, N., FURLAN, G., VITTUR, F., ZANETTI, M. & DeBERNARD, B. (1979) Enzymatic properties of Ca++-binding glycoprotein isolated from preosseous cartilage.Calcif. Tissue Int. 29, 27–32.

    Google Scholar 

  • TAKAGI, M., PARMLEY, R. T., DENYS, F. R. & KAGEYAMA, M. (1983a) Ultrastructural visualization of complex carbohydrates in epiphyseal cartilage with the tannic acid-salt methods.J. Histochem. Cytochem. 31, 783–90.

    Google Scholar 

  • TAKAGI, M., PARMLEY, R. T. & DENYS, F. R. (1983b) Ultrastructural cytochemistry and immunocytochemistry of proteoglycans associated with epiphyseal cartilage calcification.J. Histochem. Cytochem. 31, 1089–100.

    Google Scholar 

  • THYBERG, J. (1977) Electron microscopy of cartilage proteoglycans.Histochem. J. 9, 259–66.

    Google Scholar 

  • THYBERG, J., LOHMANDER, S. & FRIBERG, U. (1973) Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage.J. Ultrastruct. Res. 45, 407–27.

    Google Scholar 

  • TRILLO, A. (1977) Ultrastructure of proteoglycans in human renal arteries from end-stage renal disease.Atherosclerosis 28, 161–9.

    Google Scholar 

  • WEISS, R. E. & REDDI, A. H. (1981) Appearance of fibronectin during the differentiation of cartilage, bone, and bone marrow.J. Cell Biol. 88, 630–7.

    Google Scholar 

  • WHITE, D. L., MAZURKIEVICZ, J. E. & BARNETT, R. J. (1979) A chemical mechanism for tissue staining by osmium tetroxide-ferrocyanide mixtures.J. Histochem. Cytochem. 27, 1084–91.

    Google Scholar 

  • WILSMAN, N. J., FARNUM, C. E., HILLEY, H. D. & CARLSON, C. S. (1981) Ultrastructural evidence of a functional heterogeneity among physeal chondrocytes in growing swine.Amer. J. Vet. Res. 42, 1547–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewinson, D. Application of the ferrocyanide-reduced osmium method for mineralizing cartilage: Further evidence for the enhancement of intracellular glycogen and visualization of matrix components. Histochem J 21, 259–270 (1989). https://doi.org/10.1007/BF01757178

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01757178

Keywords

Navigation