International Journal of Game Theory

, Volume 16, Issue 1, pp 1–14 | Cite as

Computation of the nucleolus of some bilateral market games

  • P. Legros
Article

Abstract

This paper gives a simple algorithm for computing the nucleolus of bilateral markets with two complementary commodities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brune S (1976) Computation of the nucleolus for superadditive 4-person games. Working Paper N∘ 48, Institute of Mathematical Studies, Bielefeld University, SeptemberGoogle Scholar
  2. Brune S (1983) On the regions of linearity for the nucleolus and their computation. International Journal of Game Theory 12(1):47–80Google Scholar
  3. Bruyneel G (1979) Computation of the nucleolus of a game by means of minimal balanced sets. Operations Research Verfahren 34:35–51Google Scholar
  4. Driessen T, Tijs S (1983) Game-theoretic solutions for some economic situations. Mimeo, paper presented at the 12th DGOR Conference in Mannheim, September 21–23, 1983Google Scholar
  5. Galil Z (1974) The nucleolus in games with major and minor players. International Journal of Game Theory 3(3):129–140Google Scholar
  6. Grotte JH (1972) Observations on the nucleolus and the central game. International Journal of Game Theory 1:173–177Google Scholar
  7. Kohlberg E (1971) On the nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 20(1):62–66Google Scholar
  8. Kohlberg E (1972) The nucleolus as a solution of a minimization problem. SIAM Journal of Applied Mathematics 23(1):34–39Google Scholar
  9. Legros P (1984) Formation des coalitions et allocation des coûts: une approche par la théorie des jeux. Dissertation for the Doctorate, University of Paris XII, La Varenne St HilaireGoogle Scholar
  10. Littlechild SC (1974) A simple expression of the nucleolus in a special case. International Journal of Game Theory 3:21–29Google Scholar
  11. Maschler M (1976) An advantage of the bargaining set over the core. Journal of Economic Theory 13:184–192Google Scholar
  12. Maschler M, Peleg B (1967) The structure of the kernel of a cooperative game. SIAM Journal of Applied Mathematics 15(3):569–604Google Scholar
  13. Maschler M, Peleg B, Shapley LS ((1979) Geometric properties of the kernel, nucleolus, and related solution concepts. Mathematics of Operations Research 4(4):303–338Google Scholar
  14. Owen G (1974) A note on the nucleolus. International Journal of Game Theory 3(2):101–103Google Scholar
  15. Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 17(3):1163–1169Google Scholar

Copyright information

© Physica-Verlag 1987

Authors and Affiliations

  • P. Legros
    • 1
  1. 1.Université de Paris XIIFrance

Personalised recommendations