Skip to main content
Log in

Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The contractile proteins actin and myosin are of considerable biological interest. They are essential for muscle contraction and in eukaryotic cells they play a crucial role in most contractile phenomena. Over the years since the first fluorescence resonance energy transfer (FRET) paper appeared, an extensive body of literature has accumulated on this technique using actin, myosin and the actomyosin complex. These papers are reviewed with several aims in mind: (i) we assess the reliability and consistency of intra- and inter-molecular distances measured between the fluorescent probes attached to specific sites on these proteins; (ii) we determine whether the measurements can be assembled into an internally consistent model which can be fitted to the known dimensions of the actomyosin complex; (iii) several of the FRET distances are consistent with the available structural data from crystallographic and electron microscopic dimensions; (iv) the modelled FRET distances suggest that the assumed value of the orientation factor (K 2 = 2/3) is reasonable; (v) we conclude that the model has a predictive value, i.e. it suggests that a small number of the published dimensions may be incorrect and predicts the magnitude of a larger number of measurements which have not yet been reported; and finally (vi) we discuss the contribution of FRET determinations to the current debate on the molecular mechanism of contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos, L. A., Huxley, H. E., Holmes, K. C., Goody, R. S. &Taylor, K. A. (1982) Structural evidence that myosin heads may interact with two sites of F-actin.Nature Lond.,299, 467–9.

    Google Scholar 

  • Ando, T. &Scales, D. (1985) Skeletal muscle myosin subfragment-1 induces bundle formation by actin filaments.J biol. Chem. 260, 2321–27.

    Google Scholar 

  • Barden, J. A. (1985) Fluorescence energy transfer between Tyr-69 and Cys-374 in actin.Biochem. Int. 11, 583–9.

    Google Scholar 

  • Barden, J. A., Cooke, R., Wright, P. E. & dosRemedios, C. G. (1980) Proton nuclear magnetic resonance and electron paramagnetic resonance studies on skeletal muscle actin indicate that the metal and nucleotide binding sites are separate.Biochemistry 19, 5912–16.

    Google Scholar 

  • Barden, J. A. & dosRemedios, C. G. (1983) High resolution proton NMR studies of G-actin. InActin Structure and Function in Muscle and Non-Muscle Cells (edited by dos Remedios, C. G. and Barden, J. A.), pp. 53–62. Sydney: Academic Press.

    Google Scholar 

  • Barden, J. A. & dosRemedios, C. G. (1984) The environment of the high-affinity cation binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy.J. Biochem., Tokyo 96, 913–21.

    Google Scholar 

  • Barden, J. A. &Miki, M. (1986) The distance separating Tyr-69 from the high-affinity nucleotide and metal binding sites in actin.Biochem. Int. 12, 321–9.

    Google Scholar 

  • Barden, J. A., Miki, M. & dosRemedios, C. G. (1986a) Selective labelling of Cys-10 on actin.Biochem. Int. 12, 95–101.

    Google Scholar 

  • Barden, J. A., Miki, M., Hambly, B. D. & dosRemedios, C. G. (1986b) Localization of the phalloidin and nucleotide-binding sites on actin.Eur. J. Biochem. (in press).

  • Bhandari, D. G., Trayer, H. R. &Trayer, I. P. (1985) Resonance energy transfer evidence for two attached states of the actomyosin complex.FEBS Lett. 187, 160–6.

    Google Scholar 

  • Botts, J., Takashi, R., Torgerson, P., Hozumi, T., Muhlrad, A., Mornet, D. &Morales, M. F. (1984) On the mechanism of energy transduction in myosin subfragment 1.Proc. natn. Acad. Sci. U. S. A. 81, 2060–4.

    Google Scholar 

  • Brauer, M. &Sykes, B. D. (1982) Effects of manganous ion on the phosphorus-31 nuclear magnetic resonance spectrum of adenosine triphosphate bound to nitrated actin.Biochemistry 21, 5934–9.

    Google Scholar 

  • Brauer, M. &Sykes, B. D. (1986) 19-Fnuclear magnetic resonance studies of selectively fluorinated derivatives of G- and F-actin.Biochemistry 25, 2187–91.

    Google Scholar 

  • Burke, M. &Reisler, E. (1977) Effect of nucleotide binding on the proximity of the essential sulphydryl groups of myosin. Chemical probing of movement of residues during conformational transitions.Biochemistry 16, 4449–53.

    Google Scholar 

  • Burtnick, L. (1984) Modification of actin with fluorescein isothiocyanate.Biochim. biophys. Acta 791, 57–62.

    Google Scholar 

  • Cerione, R. A. &Hammes, G. G. (1982) Structural mapping of nucleotide binding sites on chloroplast coupling factor.Biochemistry 21, 745–52.

    Google Scholar 

  • Chantler, P. D. &Gratzer, W. B. (1975) The effect of specific chemical modification of actin.Eur. J. Biochem. 60, 67–72.

    Google Scholar 

  • Cheung, H. C., Gonsoulin, F. &Garland, F. (1983a) Fluorescence energy transfer studies on the proximity of the two essential thiols of myosin subfragment-1.J. biol. Chem. 258, 5775–86.

    Google Scholar 

  • Cheung, H. C., Gonsoulin, F. &Garland, F. (1985) An investigation of the SH1-SH2 and SH1-ATPase distances in myosin subfragment-1 by resonance energy transfer using nanosecond fluorimetry.Biochim. biophys. Acta 832, 52–62.

    Google Scholar 

  • Cheung, H. C. &Liu, B.-M. (1984) Distance between nucleotide site and cysteine-373 of G-actin by resonance energy transfer measurements.J. Musc. Res. Cell Motility 5, 65–80.

    Google Scholar 

  • Cheung, H. C., Wang, C. K. &Garland, F. (1983b) Fluorescence energy transfer studies of skeletal troponin C proximity between methionine-25 and cysteine-98.Biochemistry 21, 5135–42.

    Google Scholar 

  • Cooke, R. (1982) Fluorescence as a probe of contractile systems.Meth. Enzymol. 85, 574–93.

    Google Scholar 

  • Cooke, R. (1986) The mechanism of muscle contraction.CRC Crit. Rev. Biochem. 21, 53–118.

    Google Scholar 

  • Cooke, R., Crowder, M. S. &Thomas, D. D. (1982) Orientation of spin labels attached to crossbridges in contracting muscle fibres.Nature, Lond. 300, 776–9.

    Google Scholar 

  • Cooke, R., Crowder, M. S., Wendt, C. H., Barnett, V. A. &Thomas, D. D. (1984) Muscle cross-bridges: Do they rotate? InContractile Mechanisms in Muscle (edited by Pollack, G. H. and Sugi, H.), pp. 413–27. New York: Plenum.

    Google Scholar 

  • Craig, R., Trinick, J. &Knight, P. (1986) Discrepancies in length of myosin head.Nature, Lond. 320, 688.

    Google Scholar 

  • Curmi, P. M. G., Barden, J. A. & dosRemedios, C. G. (1982) Conformational studies of G-actin containing bound lanthanide.Eur. J. Biochem. 122, 239–44.

    Google Scholar 

  • Curmi, P. M. G., Barden, J. A. & dosRemedios, C. G. (1984) Actin tube formation. Effect of various commonly used solvent conditions.J. Musc. Res. Cell Motility 5, 423–30.

    Google Scholar 

  • Dalbey, R. E., Weiel, J., Perkins, W. J. &Yount, R. G. (1984) Resolution of multiple fluorescence lifetimes in heterogeneous systems by phase-modulation fluorimetry.J. Biochem. biophys. Meth. 9, 251–66.

    Google Scholar 

  • Dalbey, R. E., Weiel, J. &Yount, R. G. (1983) Förster energy transfer measurements of thiol 1 to thiol 2 distances in myosin subfragment 1.Biochemistry 22, 4696–706.

    Google Scholar 

  • Dale, R. E. &Eisinger, J. (1974) Intramolecular distance determinations by energy transfer. Dependence on orientational freedom of donor and acceptor.Biopolymers 13, 1573–605.

    Google Scholar 

  • Dale, R. E., Eisinger, J. &Blumberg, W. E. (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer.Biophys. J. 26, 161–94.

    Google Scholar 

  • dosRemedios, C. G. (1983) A review of the molecular basis of contractility. New evidence has recently come to light that throws doubt on the rotating cross-bridge mechanism.Proc. Aust. physiol. pharmacol. Soc. 14, 202–17.

    Google Scholar 

  • dosRemedios, C. G. &Cooke, R. (1984) Fluorescence energy transfer between probes on actin and probes on myosin.Biochim. biophys. Acta 188, 193–205.

    Google Scholar 

  • dosRemedios, C. G., Hambly, B. D. &Barden, J. A. (1985) On the nucleotide binding site of actin. InCell Motility: Mechanism and Regulation (edited byIshikawa, M.,Hatano, S. andSato, H.), pp. 31–8. University of Tokyo Press.

  • dosRemedios, C. G. &Mihashi, K. (1985) A new fluorescent labelled site on skeletal muscle actin.Proc. Aust. biochem. Soc. 17, 45.

    Google Scholar 

  • Dunn, B. M., Pham, C., Raney, L., Abayasekara, D., Gillespie, W. &Hsu, A. (1981) Interaction of alpha-dansylated peptide inhibitors with porcine pepsin: Detection of complex formation by fluorescence energy transfer and chromatography and evidence for a two-step binding scheme.Biochemistry 20, 7206–11.

    Google Scholar 

  • Eisenberg, E. &Greene, L. E. (1980) The relation of muscle biochemistry to muscle physiology.Ann. Rev. Physiol. 42, 29–309.

    Google Scholar 

  • Elzinga, M. &Collins, J. (1975) Primary structure of actin from rabbit skeletal muscle.J. biol. Chem. 250, 5897–920.

    Google Scholar 

  • Elzinga, M. &Collins, J. M. (1977) Amino acid sequence of a myosin fragment that contains SH1, SH2 and N-methylhistidine.Proc. natn. Acad. Sci. U. S. A. 74, 4281–4.

    Google Scholar 

  • Fairclough, R. H. &Cantor, C. R. (1978) The use of singlet-singlet transfer to study macromolecular assembliesMeth. Enzymol. 48, 247–279.

    Google Scholar 

  • Flicker, P., Peltz, G., Sheetz, M. P., Parham, P. &Spudich, J. A. (1985) Monomeric Acanthamoeba myosin I supports movementin vitro. J. Cell Biol. 100–1024.

  • Förster, T. (1965) Delocalized excitation and excitation transfer. InModern Quantum Chemistry (edited bySinanoglu, O.), part III pp. 93–137. New York: Academic Press.

    Google Scholar 

  • Gersman, L. C., Selden, L. A. &Estes, J. (1986) High affinity binding of divalent cation to actin monomer is much stronger than previously thought.Biochem. biophys. Res. Commun. 135, 607–14.

    Google Scholar 

  • Goody, R. S. &Holmes, K. C. (1983) Cross-bridges and the mechanism of muscle contraction.Biochim. biophys. Acta 726, 13–39.

    Google Scholar 

  • Graceffa, P. &Seidel, J. (1980) A reaction involving protein sulfhydryl groups, a bound spin label, and KFe(CN) as a probe of sulfhydryl proximity in myosin.Biochemistry 19, 33–9.

    Google Scholar 

  • Hambly, B. D., Barden, J. A., Miki, M. & dosRemedios, C. G. (1986) Structural and functional domains on actin.BioEssays 4, 124–8.

    Google Scholar 

  • Hardwicke, P. M. D., Walliman, T. &Szent-györgyi, A. G. (1983) Light chain movement and regulation in scallop myosin.Nature, Lond. 301, 478–82.

    Google Scholar 

  • Harrington, W. F. (1971) A mechanochemical mechanism for muscle contraction.Proc. natn. Acad. Sci. U. S. A. 68, 685–89.

    Google Scholar 

  • Harrington, W. F. &Rodgers, M. E. (1984) Myosin.Ann. Rev. Biochem. 53, 35–73.

    Google Scholar 

  • Hatano, S., Owaribe, K., Matsumura, F., Hasegawa, T. &Takahashi, S. (1980) Characterization of actin, actinin and myosin isolated fromPhysarum.Canad. J. Botany 58, 750–9.

    Google Scholar 

  • Haugland, R. P. (1975) Myosin structure proximity measurements by fluorescence energy transfer.J. supramolec. Struct. 3, 338–47.

    Google Scholar 

  • Higashi, S. &Oosawa, F. (1965) Conformational changes associated with polymerization and nucleotide binding in actin molecules.J. mol. Biol. 12, 843–65.

    Google Scholar 

  • Schighsmith, S. &Cooke, R. (1983) Evidence for actomyosin conformational changes involved in tension generation.Cell Musc. Motility 4, 207–37.

    Google Scholar 

  • Highsmith, S. &Eden, D. (1986) Myosin subfragment 1 has tertiary structural domains.Biochemistry 25, 2237–42.

    Google Scholar 

  • Hillel, Z. &Wu, C.-W. (1976) Statistical interpretation of fluorescence energy transfer measurements in macromolecular systems.Biochemistry 15, 2105–13.

    Google Scholar 

  • Hiratsuka, T. (1980) Lysyl residues of cardiac myosin accessible to labeling with a fluorescent reagent,N-methyl-2-anilino-6-naphthalenesulfonyl chloride.J. Biochem., Tokyo 88, 1437–48.

    Google Scholar 

  • Hiratsuka, T. (1983) New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes.Biochim. biophys. Acta 742, 496–508.

    Google Scholar 

  • Hiratsuka, T. &Uchida, K. (1981) Localization and isolation of the peptides in cardiac myosin that contain the lysyl residues accessible to labelling with a fluorescent reagent, N-methyl-2-anilino-6-naphthalenesulphonyl chloride.J. Biochem., Tokyo 89, 111–123.

    Google Scholar 

  • Huxley, A. F. &Simmons, R. M. (1971) Proposed mechanism of force generation in striated muscle.Nature, Lond. 233, 533–8.

    Google Scholar 

  • Huxley, H. E. (1969) The mechanism of muscular contraction.Science 164, 1356–65.

    Google Scholar 

  • Jacobson, G. &Rosenbusch, J. (1976) ATP binding to a protease-resistant core of actin.Proc. natn. Acad. Sci. U. S. A. 73, 2742–6.

    Google Scholar 

  • Johnson, D. A., Voet, J. G. &Taylor, P. (1984) Fluorescence energy transfer between cobra alphatoxin molecules bound to the acetylcholine receptor.J. biol. Chem. 259, 5717–725.

    Google Scholar 

  • Kabsch, W., Mannherz, H. G. &Suck, D. (1985) Three-dimensional structure of the complex of actin and DNase I at 4.5Å resolution.EMBO J. 4, 2113–18.

    Google Scholar 

  • Kaspryzyk, P. G., Anderson, P. M. &Villafranca, J. J. (1983) Fluorescence energy transfer experiments withEschericia coli carbamoyl phosphate synthetase.Biochemistry 22, 1877–82.

    Google Scholar 

  • Konno, K. &Morales, M. F. (1985) Exposure of actin thiols by the removal of tightly held calcium ions.Proc. natn. Acad. Sci. U. S. A. 82, 7904–8.

    Google Scholar 

  • Lakowicz, J. R. (1983) Energy Transfer InPrinciples of Fluorescence Spectroscopy, pp. 305–337. New York: Plenum Press.

    Google Scholar 

  • Lin, T.-I. (1978) Fluorimetric studies of actin labelled with dansyl aziridine.Arch. Biochem. Biophys. 185, 285–99.

    Google Scholar 

  • Lin, T.-I. &Dowben, R. M. (1982) Fluorescence spectroscopic studies of pyrene-actin adducts.Biophys. Chem. 15, 289–98.

    Google Scholar 

  • Lusty, C. J. &Fasold, H. (1969) Characterization of sulphydryl groups of actin.Biochemistry 8, 2933–9.

    Google Scholar 

  • Marsh, D. J. &Lowey, S. (1980) Fluorescence energy transfer of myosin subfragment 1.Biochemistry 19, 774–84.

    Google Scholar 

  • Mendelson, R. A. (1985) The length of myosin subfragment one.Nature, Lond. 318, 20.

    Google Scholar 

  • Mendelson, R. A. &Kretzschmar, K. M. (1980) Structure of myosin subfragment 1 from low angle X-ray scattering.Biochemistry 19, 4103–8.

    Google Scholar 

  • Miki, M., Barden, J. A. & dosRemedios, C. G. (1986a) Fluorescence resonance energy transfer between the nucleotide binding site and Cys-10 in G-actin and F-actin.Biochim. biophys. Acta 872, 76–82.

    Google Scholar 

  • Miki, M., Barden, J. A., Hambly, B. D. & dosRemedios, C. G. (1986c) Fluorescence energy transfer between Cys-10 residues in F-actin filaments.Biochem. Int. 12, 725–31.

    Google Scholar 

  • Miki, M., Barden, J. A. & dosRemedios, C. G. (1986d) The distance separating Cys-10 from the high-affinity metal binding site in actin.Biochem. Int. 12, 807–13.

    Google Scholar 

  • Miki, M., Hambly, B. D.& dosRemedios, C. G. (1986b) Fluorescence energy transfer between nucleotide binding sites in an F-actin filament.Biochim. biophys. Acta 871, 137–41.

    Google Scholar 

  • Miki, M. &Iio, T. (1984) Fluorescence energy transfer measurements between nucleotide binding site and Cys-373 in actin and its application to the kinetics of actin polymerization.Biochim. biophys. Acta 790, 201–7.

    Google Scholar 

  • Miki, M. &Mihashi, K. (1977) Fluorescence and flow dichroism of F-actin-e-ADP: The orientation of the adenine plane relative to the long axis of F-actin.Biophys. Chem. 6, 101–6.

    Google Scholar 

  • Miki, M. &Mihashi, K. (1978) Fluorescence energy transfer between e-ATP at the nucleotide binding site andN-(4-dimethylamino-3, 5-dinitrophenyl)-maleimide at Cys-373 of G-actin.Biochim. biophys. Acta 533, 163–72.

    Google Scholar 

  • Miki, M., Ohnuma, H. &Mihashi, K. (1974) Interaction of actin with e-ATP.FEBS Lett. 46, 17–19.

    Google Scholar 

  • Miki, M. &Wahl, P. (1984a) Fluorescence energy transfers in labelled G-actin and F-actin.Biochim. biophys. Acta 786, 188–96.

    Google Scholar 

  • Miki, M. &Wahl, P. (1984b) Fluorescence energy transfer between points in acto-subfragment-1 rigor complex.Biochim. biophys. Acta 790, 275–83.

    Google Scholar 

  • Miki, M. &Wahl, P. (1985) Fluorescence energy transfer between points in G-actin: The nucleotide binding site, the metal binding site and Cys-373 residue.Biochim. biophys. Acta 828, 188–95.

    Google Scholar 

  • Morales, M. F., Borejdo, J., Botts, J., Cooke, R., Mendelson, R. A. &Takashi, R. (1982) Some physical studies of the contractile mechanism in muscle.Ann. Rev. phys. Chem. 33, 319–51.

    Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E. &Kassab, R. (1981) Proteolytic approach to structure and function of actin recognition sites in myosin heads.Biochemistry 20, 2110–20.

    Google Scholar 

  • Mornet, D. &Ue, K. (1984) Proteolysis and the domain organization of myosin subfragment 1.Proc. natn. Acad.Sci. U. S. A. 81, 736–9.

    Google Scholar 

  • Moss, D. J. &Trentham, D. R. (1983) Distance measurements between the active site and cysteine-177 of the alkali one light chain of subfragment 1 from rabbit skeletal muscle.Biochemistry 22, 5261–70.

    Google Scholar 

  • Oosawa, F. (1983a) Physicochemical properties of single filaments of F-actin. InActin Structure and Function of Muscle and Non-Muscle Cells (edited by dosRemedios, C. G. andBarden, J. A.), pp. 69–80. Sydney: Academic Press.

    Google Scholar 

  • Oosawa, F. (1983b) Macromolecular assembly of actin. InMuscle and Nonmuscle Motility (edited byStracher, A.), pp. 152–216. New York: Academic Press.

    Google Scholar 

  • Oosawa, F. &Asakura, S. (1975)Thermodynamics of the Polymerization of Protein. London: Academic Press.

    Google Scholar 

  • Periasamy, M., Strehler, E., Garfinkel, L., Ligubts, R., Ruiz-Opazo, N. &Nadal-Ginard, B.(1984) Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing.J. biol. Chem. 259, 13595–604.

    Google Scholar 

  • Perkins, W. J., Weiel, J., Grammer, J. &Yount, R. G. (1984) Introduction of a donor-acceptor pair by a single protein modification. Forster energy transfer distance measurements from trapped l,N6-ethenoadenosine diphosphate to chromophoric cross-linking reagents on the critical thiols of myosin subfragment 1.J. biol. Chem. 259, 8786–93.

    Google Scholar 

  • Rayment, I. &Winkelmann, D. A. (1984) Crystallization of myosin subfragment 1.Proc. natn. Acad. Sci. U. S. A. 81, 4378–82.

    Google Scholar 

  • Recchia, J., Matthews, C. R., Rhee, M. J. &Horrocks, W. D. Jr. (1982) Inter-residue distance measurements in proteins. Fluorescence energy transfer between tryptophans and a Ru(III) (NH) 5-histidine complex in alpha-lytic protease and lysozyme.Biochim. biophys. Acta 702, 105–11.

    Google Scholar 

  • Robbins, D. &Hardesty, B. (1983) Comparison of ribosomal entry and acceptor transfer ribonucleic acid binding sites onEschericia coli 70S ribosomes. Fluorescence energy transfer measurements for phe-t RNA -phe to the 3′ end of 16S ribonucleic acid.Biochemistry 22, 5675–9.

    Google Scholar 

  • Sakabe, N., Sakabe, K., Sasaki, K., Kondo, H., Ema, T., Kamiya, N. &Matsushima, M. (1983) CryStallographic studies of the chicken gizzard G-actin DNase I complex at 5Å resolution.J. Biochem., Tokyo 93, 299–302.

    Google Scholar 

  • Sekine, T. &Keilley, W. w. (1964) The enzymatic properties of N-ethylmaleimide modified myosin.Biochim. Biophys. Acta 81, 336–45.

    Google Scholar 

  • Sekine, T. &Yamaguchi, M. (1963) Effect of ATP on the binding of N-ethylmaleimide to SH groups in the active site of myosin ATPase.J. Biochem. Tokyo 54, 196–202.

    Google Scholar 

  • Sleigh, R. W. &Burley, R. w. (1973) Site of action of sulfhydryl spin labels with skeletal actin.Arch. Biochem. Biophys. 159, 792–801.

    Google Scholar 

  • Strehler, E. E., Strehler-Page, M.-A., Perriard, J.-C., Periasamy, M. &Nadal-Ginard, B. (1986) Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Evidence against intron-dependent evolution of the rod.J. Mol. Biol. 190, 291–317.

    Google Scholar 

  • Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler.Ann. Rev. Biochem. 47, 819–46.

    Google Scholar 

  • Stryer, L. &Haugland, R. p. (1967) Energy transfer: A spectroscopic ruler.Proc. natn. Acad. Sci. U. S. A. 58, 719–26.

    Google Scholar 

  • Suck, D., Kabsch, W. &Mannherz, H. G. (1981) Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNase I at 6Å resolution.Proc. natn. Acad. Sci. U. S. A. 78, 4319–23.

    Google Scholar 

  • Sutoh, K. (1982) An actin-binding site on the 20K fragment of myosin subfragment 1.Biochemistry 21, 3654–61.

    Google Scholar 

  • Sutoh, K., Yamamoto, K. &Wakabayashi, T. (1984) Electron microscopic visualization of the SH1 thiol of myosin by the use of an avidin-biotin system.J. mol. Biol. 178, 323–39.

    Google Scholar 

  • Takashi, R. (1979) Fluorescence energy transfer between subfragment 1 and actin points in the rigor complex of actosubfragment-1.Biochemistry 18, 5164–9.

    Google Scholar 

  • Takashi, R. (1980) cited fromCooke, R.. (1982)Meth. Enzymol. 85 Part B, 595.

    Google Scholar 

  • Takashi, R., Muhlrad, A. &Botts, J. (1982) Spatial relationship between a fast-reacting thiol and a reactive lysine residue of myosin subfragment 1.Biochemistry 21, 5661–8.

    Google Scholar 

  • Takashi, R., Torgerson, P. M. &Duke, J. A. (1984) Proximity of LC2 thiol to the reactive lysine of myosin heavy chain.Biophys. J. 45, 223a.

    Google Scholar 

  • Taniguchi, M. (1976) Diphasic transformations of F-actin. Effects of urea and MgCl2 on F-actin.Biochim. biophys. Acta 427, 126–40.

    Google Scholar 

  • Tao, T. &Lamkin, M. (1981) Excitation energy transfer studies on the proximity between SHI and the adenosine triphosphatase site in myosin subfragment 1.Biochemistry 20, 5051–5.

    Google Scholar 

  • Tao, T., Lamkin, M. &Lehrer, S. S. (1983) Excitation energy transfer studies of the proximity between tropomyosin and actin reconstructed skeletal muscle thin filaments.Biochemistry 22, 3059–66.

    Google Scholar 

  • Taylor, D. L., Reidler, J., Spudich, J. A. &Stryer, L. (1981) Detection of actin assembly by fluorescence energy transfer.J. Cell Biol. 89, 362–7.

    Google Scholar 

  • Toyoshima, C. &Wakabayashi, T. (1985) Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. V. Assignment of actin in the acto-tropomyosinmyosin subfragment 1 complex.J. Biochem., Tokyo 97, 245–63.

    Google Scholar 

  • Trayer, H. R. &Trayer, I. P. (1983) Fluorescence energy transfer between the myosin subfragment-1 isozymes and F-actin in the absence and presence of nucleotides.Eur. J. Biochem. 135, 47–59.

    Google Scholar 

  • Tregear, R. (1986) Crossbridges, force and motion.Nature, Lond. 321, 563.

    Google Scholar 

  • Vanderkerckhove, J. &Weber, K. (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. A protein chemical analysis of muscle actin differentiation.Differentiation 14, 123–33.

    Google Scholar 

  • Vibert, P. &Craig, R. (1982) Three-dimensional reconstruction of thin filaments decorated with a Caregulated myosin.J. mol. Biol.,157, 299–320.

    Google Scholar 

  • Vibert, P., Szentkiralyi, E., Hardwicke, P., Szentψörgyi, A. G., &Cohen, C. (1986) Structural models for the regulatory switch of myosin.Biophys. J. 49, 131–3.

    Google Scholar 

  • Weiel, J., Perkins, W. J. &Yount, R. G. (1982) Use of phase-modulation fluorescence lifetime analyses to determine spatial relationships in myosin subfragment one (SF1) by energy transfer.Biophys. J. 37, 265a.

    Google Scholar 

  • Wells, J. A. &Yount, R. G. (1980) Reaction of 5,5′-dithiobis(2-nitrobenzoic acid) with myosin subfragment one: Evidence for formation of a single protein disulfide with trapping of metal nucleotide at the active site.Biochemistry 19, 1711–17.

    Google Scholar 

  • Yamamoto, K., Tokunaga, M., Sutoh, K., Wakaba-Yashi, T. &Sekine, T. (1985) Localization of the SH group of the alkali light chain on the myosin head as revealed by electron microscopy.J. mol. Biol. 183, 287–90.

    Google Scholar 

  • Yanagida, T. (1981) Angles of nucleotides bound to cross-bridges in glycerinated muscle fibers at various concentrations of e-ATP, e-ADP and e-Amppnp detected by polarized fluorescence.J. mol. Biol. 146, 539–49.

    Google Scholar 

  • Yang, C. &Soll, D. (1974) Studies of transfer RNA tertiary structure by singlet-singlet energy transfer.Proc. natn. Acad. Sci. U. S. A. 71, 2838–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Remedios, C.G., Miki, M. & Barden, J.A. Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation. J Muscle Res Cell Motil 8, 97–117 (1987). https://doi.org/10.1007/BF01753986

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01753986

Keywords

Navigation