Colloid and Polymer Science

, Volume 253, Issue 7, pp 566–580 | Cite as

A rigorous theory of ring tensiometry

  • C. Huh
  • S. G. Mason
Colloid Science

Summary

TheHarkins-Jordan correction factors which make the ring method an accurate and absolute method of measuring surface and interfacial tensions, are calcuated theoretically and made available in a tabulated form. The applicable range of the numerical tabulation far exceeds the range of those available in the literature which have been obtained experimentally. With the tabulation, the ring method may be used to measure the interfacial tensions of liquid systems in which the density difference across the interface is very small and the interfacial tension is large, or in which the density difference is large and the tension is small. The theoretical calculations also provide information on the state of the ring at the liquid interface which may be used to increase accuracy of the ring method.

Keywords

Polymer Physical Chemistry Correction Factor Theoretical Calculation Interfacial Tension 

List of symbols

a

radius of the ring wire;\(\bar a \equiv a\sqrt {C_{23} } \)

Ai

quantity defined by [13a]

b

radius of curvature atr = 0 of the inner meniscus

C23

2 – ϱ3)g23

f

Harkins-Jordan factor

F

maximum equilibrium force of detachment

g

gravity

h

height of the ring;\(\bar b \equiv b\sqrt {C_{23} } \)

ri

r-coordinate of thei meniscus;\(\bar r_i \equiv r_i \sqrt {C_{23} } \)

R

radius of the ring;\(\bar R \equiv R\sqrt {C_{23} } \)

v

volume of the liquid raised:\(\bar v \equiv vC_{23}^{3/2} \)

V

maximumv;\(\bar V \equiv VC_{23}^{3/2} \)

zo

height of the inner meniscus atr = 0,\(\bar z_0 \equiv z_0 \sqrt {C_{23} } \)

zi

z-coordinate of thei meniscus,\(\bar z_i \equiv z_i \sqrt {C_{23} } \)

Greek

\i

shape parameter of thei meniscus

γ23

interfacial tension (23 interface)

λi

a quantity defined by [12]

ϱi

density of the phasei

φi

slope angle of thei meniscus profile

ψi

angle between the lines drawn from the center of the ring wire, vertically downwards and to thei contact line

Zusammenfassung

DieHarkins-Jordan Korrektionsfaktoren, die die Ringmethode als eine genaue und absolute Methode zur Bestimmung von Oberflächen- und Grenzflächenspannungen möglich machen, sind theoretisch berechnet und tabuliert worden. Der anwendbare Bereich dieser numerischen Tafeln überschreitet bei weitem den Bereich jener, die in der Literatur vorvorhanden und experimentell bestimmt worden sind. Mit diesen Tafeln kann man die Ringmethode anwenden für die. Grenzflächenspannungsmessungen flüssiger Systeme, in denen der Dichteunterschied beiderseits der Grenzfläche sehr gering und die Grenzflächenspannung sehr groß ist, oder in denen der Dichteunterschied groß und die Spannung klein ist. Die theoretischen Berechnungen darüber hinaus informieren über die Lage des Ringes an der flüssigen Grenzfläche, woraus eine erhöhte Genauigkeit der Ringmethode abgeleitet werden kann.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Harkins, W. D. andH. F. Jordan, J. Amer. Chem. Soc.52, 1751 (1930).Google Scholar
  2. 2).
    Freud, B. B. andH. Z. Freud, J. Amer. Chem. Soc.52, 1772 (1930).Google Scholar
  3. 3).
    Fox, H. W. andC. H. Chrisman, Jr., J. Phys. Chem.56, 284 (1952).Google Scholar
  4. 4).
    Zuidema, H. H. andG. W. Waters, Ind. Eng. Chem. (Anal.)13, 312 (1941).Google Scholar
  5. 5).
    Huh, C. andS. G. Mason, J. Colloid Interface Sci.47, 271 (1974).Google Scholar
  6. 6).
    Cini, R., G. Loglio andA. Ficalbi, J. Colloid Interface Sci.41, 287 (1972).Google Scholar
  7. 7).
    Mar, A. andS. G. Mason, forthcoming publication.Google Scholar
  8. 8).
    Princen, H. M. andS. G. Mason, J. Colloid Interface Sci.20, 246 (1965).Google Scholar
  9. 9).
    Cram, P. J. andJ. M. Haynes, J. Colloid Interface Sci.35, 706 (1971).Google Scholar
  10. 10).
    Princen, H. M., in: E. Matijevic (Ed.), Surface and Colloid Science, Vol. 2, 1 (New York 1969).Google Scholar
  11. 11).
    Bashforth, F. andJ. C. Adams, An Attempt to Test the Theories of Capillary Action, (Cambridge, 1883).Google Scholar
  12. 12).
    Huh, C. andL. E. Striven, J. Colloid Interface Sci.30, 323 (1969).Google Scholar
  13. 13).
    Huh, C., Ph. D. Thesis, University of Minnesota, Minneapolis, Minn. (1969).Google Scholar
  14. 14).
    Princen, H. M. andE. D. Goddard, J. Colloid Interface Sci.38, 523 (1972).Google Scholar
  15. 15).
    Lord Rayleigh, Proc. Roy. Soc. (London)A92, 184 (1915).Google Scholar
  16. 16).
    Krynitsky, J. A. andW. D. Garrett, J. Colloid Sci.18, 893 (1963).Google Scholar
  17. 17).
    van Zeggeren, F., C. d. Courval andE. D. Goddard, Canad. J. Chem.37, 1937 (1959).Google Scholar
  18. 18).
    Mar, A.,C. Huh andS. G. Mason, forthcoming publication.Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1975

Authors and Affiliations

  • C. Huh
    • 1
  • S. G. Mason
    • 1
  1. 1.Dept of ChemistryMc Gill UniversityMontrealCanada

Personalised recommendations