Skip to main content
Log in

Thermodynamics and kinetics of phase transitions in linear polyurethanes from hexa(methylene diisocyanate) and low molecular weight glycoles

  • Original Contributions
  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

Linear polyurethanes based on hexa(methylene diisocyanate) and oligo(ethylene glycoles) were studied using the methods of differential calorimetry, dilatometry and hot-stage microscopy. Thermodynamic analysis of melting and glass transition has shown that urethane groups lower the conformational entropy of melt, which results in a regular increase of bothT m andT g with concentration of these groups in the chain. Energy of intermolecular hydrogen bonding involving urethane groups was estimated by Zhurkov theory to be about 4 kcal/mole. Evidence is presented which suggests that glycole fragments in the crystalline state are “twisted” and depart from the extended conformation. This results not only in the increase of crystalline entropy and lowering of a crystalline packing density, but also in the decrease of a lattice cohesion energy, which then becomes dependent primarily by interactions between di(isocyanate) fragments of the chain crystallizing in the extended conformation. The described effect adequately accounts for the experimentally observed approximate constancy of thermodynamic fusion enthalpies of samples with different lengths of glycole components in the chain, as well as regular change of parametersσ e andG 0 in kinetic equations for the spherulitic growth rate.

Zusammenfassung

Lineare Polyurethane, basierend auf Hexamethylendiisocyanat und Oligoäthylenglykolen, wurden mit Differentialkalorimetrie, Dilatometrie und Hoch-temperaturmikroskopie untersucht. Die thermodynamische Analyse von Schmelz- und Glasübergang zeigt, daß Urethangruppen die Konformationsentropie der Schmelze erniedrigen,was sich zu einem regelrechten Anwachsen von beidem, Tm, undT g , mit der Konzentration von diesen Gruppen in der Kette auswirkt. Die Energie der zwischenmolekularen Wasserstoffbrückenbindung mit Urethangruppen wurde mit der Theorie vonZhurkov zu ungefähr 4 kcal/mol abgeschätzt. Es wird die Wahrscheinlichkeit dargelegt, daß Glykolfragmente in kristallinem Zustand verdrillt sind und von der gestreckten Konformation abweichen. Das resultiert nicht nur in einem Anwachsen der kristallinen Entropie und einem Absinken der kristallinen Packungsdichte, sondern auch in einer Abnahme der Gitterkohäsionsenergie, welche dann besonders abhängig vor allem von Wechselwirkungen zwischen Diisocyanat-Fragmenten in der kristallisierenden Kette in gestreckter Konformation wird. Der beschriebene Effekt ist gleicherweise verantwortlich für die experimentell beobachtete ungefähre Konstanz der thermodynamischen Schmelzenthalpien der Proben mit verschiedenen Längen der Glykolkomponente in der Kette, ebenso wie als reguläre Änderung der Parameterσ e undG 0 in den kinetischen Gleichungen für das Sphärolithwachstum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saunders, J. H. andK. C. Frisch, Polyurethanes (New York, 1962).

  2. Lipatov, Yu. S., Yu. Yu. Kercha, andL. M. Sergeeva, Structure and Properties of Polyurethanes (in Russian), Naukova Dumka (Kiev, 1970).

    Google Scholar 

  3. Godovskii, Yu. K. andYu. S. Lipatov, Vysokomol. Soe.A 10, 32 (1968).

    Google Scholar 

  4. Bunn, C. W., J. Polymer Sci.15, 355 (1955).

    Google Scholar 

  5. Privalko, V. P. andYu. S. Lipatov, Vysokomol. Soc.,A 14, 2000 (1972).

    Google Scholar 

  6. Vilenskii, V. A., A. E. Feinerman, andYu. Yu. Kercha, Information Bull. Institute of Macromolecular Chemistry, Academy of Sciences of the Ukrainian SSR, No. 19, Naukova Dumka (Kiev, 1973).

    Google Scholar 

  7. Pasechnik, Yu. V., V. A. Vilenskii, T. M. Gritsenko, andI. A. Popov, Sintez i Fiz.-Khim. Polimerov, No. 12, 112 (1973).

  8. Wunderlich, B., J. Phys. Chem.64, 1052 (1960).

    Google Scholar 

  9. Wunderlich, B. andH. Baur, Adv. Polymer Sci.,7, 151 (1970).

    Google Scholar 

  10. Karasz, F. E., H. E. Bair, andJ. M. O'Reilly, J. Phys. Chem.69, 2657 (1965).

    Google Scholar 

  11. Gianotti, G. andA. Capizzi, Europ. Polymer J.4, 677 (1968).

    Google Scholar 

  12. Kercha, Yu. Yu., Yu. S. Lipatov, S. S. Krafchik, andV. P. Privalko, Vysokomol. Soed.A 15, 1297 (1973).

    Google Scholar 

  13. Gibbs, J. H. andE. A. DiMarzio, J. Chem. Phys.28, 373 (1958).

    Google Scholar 

  14. Dimarzio, E. A. andJ. H. Gibbs, J. Chem. Phys.28, 807 (1958).

    Google Scholar 

  15. Adam, G. andJ. H. Gibbs, J. Chem. Phys.43, 139 (1965).

    Google Scholar 

  16. Bestul, A. B. andS. S. Chang, J. Chem. Phys.40, 3731 (1964).

    Google Scholar 

  17. Kirsbenbaum, I., J. Polymer Sci.A 3, 1869 (1965).

    Google Scholar 

  18. Bondi, A., Physical Properties of Molecular Crystals, Liquids and Glasses (New York, 1969).

  19. Van Krevelen, D. W., (in collaboration withP. J. Hoftyzer), Properties of Polymers (1972).

  20. Mandelkern, L., Crystallization of Polymers (1963).

  21. Privalko, V. P., Yu. S. Lipatov, A. P. Lobodina, andV. F. Shumskii, Vysokomol. Soed.A 16, 2771 No. 12 (1974).

    Google Scholar 

  22. Flory, P. J., Statistical Mechanics of Chain Molecules (New York 1969).

  23. Hobbs, S. Y. andF. W. Billmeyer, Jr., J. Polymer Sci.A 2, 8, 1395 (1970).

    Google Scholar 

  24. Boyer, R. F., J. Macromol. Sci.-Phys.B 7, 487 (1973).

    Google Scholar 

  25. Privalko, V. P. andA. P. Lobodina, Europ. Polymer J.10, 1033 (1974).

    Google Scholar 

  26. Kanig, G., Kolloid-Z. Z. Polymere233, 54 (1969).

    Google Scholar 

  27. Privalko, V. P., (unpublished calculations).

  28. Boyer, R. F., Rubber Chem. Technol.36, 1303 (1963).

    Google Scholar 

  29. Fox, T. G., Bull. Am. Phys. Soc.1, 123 (1956).

    Google Scholar 

  30. Zburkov, S. N., Dokl. Akad. Nauk USSR47, 493 (1945).

    Google Scholar 

  31. Privalko, V. P., Zh. Fiz. Khim.45, 1598 (1971).

    Google Scholar 

  32. Boyarchuk, Yu. M., L. Ya. Rappoport, V. N. Nikitin, andN. P. Apukhtina, Vysokomol. Soed.7, 778 (1965).

    Google Scholar 

  33. Zharkov, V. V. andN. K. Rudnevskii, Vysokomol. Soed.B 10, 29 (1968).

    Google Scholar 

  34. Miller, A. A., J. Chem. Phys.49, 1393 (1968).

    Google Scholar 

  35. Askadskii, A. A., G. L. Slonimskii, andA. I. Kitaigorodskii, Vysokomol. Soed.A 16, 474 (1974).

    Google Scholar 

  36. Slonimskii, G. L., A. A. Askadskii, andA. I. Kitaigorodskii, Vysokomol. Soed.A 12, 494 (1970).

    Google Scholar 

  37. Ishinabe, T., J. Phys. Soc. Japan30, 1022 (1971).

    Google Scholar 

  38. Privalko, V. P., Sintez i Fiz. Khim. Polimerov11, 51 (1972).

    Google Scholar 

  39. Privalko, V. P., Macromol.7, 111 (1973).

    Google Scholar 

  40. Privalko, V. P., Polymer J.,7, 202 (1975).

    Google Scholar 

  41. Hoffman, J. D., SPE Trans.4, 315 (1964).

    Google Scholar 

  42. Privalko, V. P., Vysokomol. Soed.A 15, 1905 (1973).

    Google Scholar 

  43. Privalko, V. P. andYu. S. Lipatov, Kolloid-Z. Z. Polymere251, 583 (1973).

    Google Scholar 

  44. Privalko, V. P. andYu. S. Lipatov, Vysokomol. Soed.B 15, 682 (1973).

    Google Scholar 

  45. Godovskii, Yu. K., Vysokomol. Soed.A 11, 2129 (1969).

    Google Scholar 

  46. Gandica, A. andJ. H. Magill, Polymer13, 595 (1972).

    Google Scholar 

  47. Shumskii, V. F. andV. P. Privalko, Sintez i Fiz.-Khim. Polimerov10, 58 (1972).

    Google Scholar 

  48. Privalko, V. P., Sintez i Fiz.-Khim. Polimerov14, 95 (1974).

    Google Scholar 

  49. Boon, J., G. Challa, andD. W. Van Krevelen, J. Polymer Sci.A 2, 6, 1791 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipatov, Y.S., Privalko, V.P., Kercha, Y.Y. et al. Thermodynamics and kinetics of phase transitions in linear polyurethanes from hexa(methylene diisocyanate) and low molecular weight glycoles. Colloid & Polymer Sci 254, 615–627 (1976). https://doi.org/10.1007/BF01753690

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01753690

Keywords

Navigation