Journal of Muscle Research & Cell Motility

, Volume 7, Issue 5, pp 387–404 | Cite as

The role of tropomyosin-troponin in the regulation of skeletal muscle contraction

  • Saleh C. El-Saleh
  • Kimbrough D. Warber
  • James D. Potter


Steric blocking of actin-myosin interaction by tropomyosin has been a working hypothesis in the study of the regulation of skeletal muscle contraction, yet the simple movement of actin-associated tropomyosin from a myosin-blocking position (relaxation) to a nonblocking position (contraction) cannot adequately account for all of the biophysical and biochemical observations which have been made to date. Ambiguous assignment of tropomyosin positions on actin during contraction, due in part to the limited resolution of reconstruction techniques, may also hint at a real lack of clearcut ‘on’ and ‘off’ positioning of tropomyosin and tropomyosin-troponin complex. Recent biochemical evidence suggests processes relatively independent of tropomyosin-troponin may have a governing effect on contraction, involving kinetic constraints on actin-myosin interaction influenced by the binding of ATP and the intermediates of ATP hydrolysis. Based on our current understanding put forth in this review, it is clear that regulatory interactions in muscle contraction do not consist solely of steric effects but involve kinetic factors as well. Where the latter are being defined in systems reconstituted from purified proteins and their fragments, the steric components of regulation are most clearly observed in studies of structurally more intact physiologic systems (e.g. intact or skinned whole muscle fibres). The fine detail of the processes and their interplay remains an intriguing question. Likewise, the precise physical relationship of myosin with actin in the crossbridge cycle continues to elude definition. Refinement of several methodologies (X-ray crystallography, three-dimensional reconstruction, time-resolved X-ray diffraction) will increase the potential for detailing the molecular basis of the regulation of muscle contraction.


Muscle Contraction Physiologic System Intrigue Question Physical Relationship Kinetic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, M., Dubochet, J. Lepault, J. &McDowall, A. W. (1984) Cryoelectron microscopy of viruses.Nature, Lond. 308, 32–6.Google Scholar
  2. Bálint, M., Wolf, I., Tarcsafalvi, A., Gergely, J. &Sréter, F. A. (1978) Location of SH-1 and SH-2 in the heavy chain segment of heavy meromyosin.Archs Biochem. Biophys. 190, 793–9.Google Scholar
  3. Berzofsky, J. A., Buckenmyer, G. K., Hicks, G., Gurd, F. R. N., Feldmann, R. J. &Minna, J. (1982) Topographic antigenic determinants recognized by monoclonal antibodies to sperm whale myoglobin.J. biol. Chem. 257, 3189–98.Google Scholar
  4. Brandt, P. W., Cox, R. N. &Kawai, M. (1980) Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle?Proc. natn. Acad. Sci. U.S.A. 77, 4717–20.Google Scholar
  5. Brandt, P. W., Reuben, J. P. &Grundfest, H. (1972) Regulation of tension in the skinned crayfish muscle fiber. II. Role of calcium.J. gen. Physiol. 59, 305–17.Google Scholar
  6. Bremel, R. D. &Weber, A. (1972) Cooperation within actin filament in vertebrate skeletal muscle.Nature, New Biol. 238, 97–101.Google Scholar
  7. Brenner, B., Schoenberg, M., Chalovich, J. M., Green, L. E. &Eisenberg, E. (1982) Evidence for cross-bridge attachment in relaxed muscle at low ionic strength.Proc. natn. Acad. Sci. U.S.A. 79, 7288–91.Google Scholar
  8. Brenner, B., Yu, L. C. &Podolsky, R. J. (1984) X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths.Biophys. J. 46, 299–306.Google Scholar
  9. Burke, M. &Reisler, E. (1977) Effect of nucleotide binding on the proximity of the essential sulfhydryl groups of myosin. Chemical probing of movement of residues during conformational transitions.Biochemistry 16, 5559–63.Google Scholar
  10. Carnegie, P. R., Dowse, C. A. &Linthicum, D. S. (1983) Antigenic determinant recognized by a monoclonal antibody to human myelin basic protein.J. Neuroimmun. 5, 125–34.Google Scholar
  11. Chalovich, J. M., Chock, P. B. &Eisenberg, E. (1981) Mechanism of action of troponin-tropomyosin. Inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin.J. biol. Chem. 256, 575–8.Google Scholar
  12. Chalovich, J. M. &Eisenberg, E. (1982) Inhibition of actomyosin ATPase by troponin-tropomyosin without blocking the binding of myosin to actin.J. biol. Chem. 257, 2432–7.Google Scholar
  13. Chalovich, J. M. &Eisenberg, E. (1984) The effect of troponin-tropomyosin on the binding of skeletal muscle HMM to actin in the presence of ATP.Biophys. J. 45, 221a.Google Scholar
  14. Chalovich, J. M., Greene, L. E. &Eisenberg, E. (1983) Crosslinked myosin subfragment 1: A stable analogue of the subfragment-1· ATP complex.Proc. natn. Acad. Sci. U.S.A. 80, 4909–13.Google Scholar
  15. Cooke, R. (1981) Stress does not alter the conformation of a domain of the myosin cross-bridge in rigor muscle fibres.Nature, Lond. 294, 570–1.Google Scholar
  16. Cooke, R., Crowder, M. S. &Thomas, D. D. (1982) Orientation of spin labels attached to cross-bridges in contracting muscle fibres.Nature, Lond. 300, 776–8.Google Scholar
  17. Donaldson, S. K. B. &Kerrick, W. G. L. (1975) Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers.J. gen. Physiol. 66, 427–44.Google Scholar
  18. East, I. J., Hurrell, J. G. R., Todd, P. E. E. &Leach, S. J. (1982) Antigenic specificity of monoclonal antibodies to human myoglobin.J. biol. Chem. 257, 3199–202.Google Scholar
  19. Eaton, B. L. (1976) Tropomyosin binding to F-actin induced by myosin heads.Science, N. Y. 192, 1337–9.Google Scholar
  20. Eaton, B. L., Kominz, D. R. &Eisenberg, E. (1975) Correlation between the inhibition of the acto-heavy meromyosin ATPase and the binding of tropomyosin to F-actin: Effects of Mg2+, KCl, troponin I and troponin C.Biochemistry 14, 2718–24.Google Scholar
  21. Ebashi, S. (1980) Regulation of muscle contraction.Proc. R. Soc. Ser. B. 207, 259–86.Google Scholar
  22. Ebashi, S. &Endo, M. (1968) Calcium ion and muscle contraction.Prog. Biophys. Molec. Biol. 18, 123–83.Google Scholar
  23. Egelman, E. H. (1985) The structure of F-actin.J. Musc. Res. Cell Motility 6, 129–51.Google Scholar
  24. Egelman, E. H. &DeRosier, J. J. (1983) Structural studies of F-actin. InActin: Structure and Function in Muscle and Non-Muscle Cells (edited byDos Remedios, C. G. &Barden, J. A.), pp. 17–24. Sydney, Australia: Academic Press, Inc.Google Scholar
  25. El-Saleh, S. C. &Potter, J. D. (1985) Calcium-insensitive binding of heavy meromyosin to regulated actin. Interaction under physiological ionic strength.J. biol. Chem. 260, 14775–9.Google Scholar
  26. El-Saleh, S. C., Thieret, R., Johnson, P. &Potter, J. D. (1984) Modification of Lys-237 on actin by 2,4-pentanedione. Alteration of the interaction of actin with tropomyosin.J. biol. Chem. 259, 11014–21.Google Scholar
  27. Fabiato, A. &Fabiato, F. (1978) Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells.J. gen. Physiol. 72, 667–99.Google Scholar
  28. Fajer, P., Fajer, E., Svensson, E., Brunsvold, N., Wendt, C. &Thomas, D. (1985) EPR studies of muscle contraction at low ionic strength (IS).Biophys. J. 47, 380a.Google Scholar
  29. Filo, R. S., Bohr, D. F. &Rüegg, J. C. (1965) Glycerinated skeletal and smooth muscle: Calcium and magnesium dependence.Science, N. Y. 147, 1581–3.Google Scholar
  30. Fuchs, F. (1977) Cooperative interactions between calcium-binding sites on glycerinated muscle fibers. The influence of cross-bridge attachment.Biochim. biophys. Acta 462, 314–22.Google Scholar
  31. Gilbert, H. F., III &O'Leary, M. H. (1975) Modification of arginine and lysine in proteins with 2,4-pentanedione.Biochemistry 14, 5194–9.Google Scholar
  32. Greaser, M. L. &Gergely, L. (1973) Purification and properties of the components from troponin.J. biol. Chem. 248, 2125–33.Google Scholar
  33. Greene, L. (1982) The effect of nucleotide on the binding of myosin subfragment 1 to regulated actin.J. biol. Chem. 257, 13993–9.Google Scholar
  34. Greene, L. E. &Eisenberg, E. (1980) Cooperative binding of myosin subfragment-1 to the actin-troponintropomyosin complex.Proc. natn. Acad. Sci. U.S.A. 77, 2616–20.Google Scholar
  35. Greene, L. E., Sellers, J. R., Eisenberg, E. &Adelstein, R. S. (1983) Binding of gizzard smooth muscle myosin subfragment 1 to actin in the presence and absence of adenosine 5′-triphosphate.Biochemistry 22, 530–5.Google Scholar
  36. Harrington, W. F. (1971) A mechanochemical mechanism for muscle contraction.Proc. natn. Acad. Sci. U.S.A. 68, 685–9.Google Scholar
  37. Harrington, W. F. (1979) On the origin of the contractile force in skeletal muscle.Proc. natn. Acad. Sci. U.S.A. 76, 5066–70.Google Scholar
  38. Harrington, W. F. &Rodgers, M. E. (1984) Myosin.A. Rev. Biochem. 53, 35–73.Google Scholar
  39. Haselgrove, J. C. (1972) X-ray evidence for a conformational change in the actin containing filaments of vertebrate striated muscle.Cold Spring Harb. Symp. quant. Biol. 37, 341–52.Google Scholar
  40. Haselgrove, J. C. (1975) X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle.J. molec. Biol. 92, 113–43.Google Scholar
  41. Haselgrove, J. C. (1980) A model of myosin crossbridge structure consistent with the low-angle X-ray diffraction pattern from vertebrate muscle.J. Musc. Res. Cell Motility 2, 177–91.Google Scholar
  42. Hellam, D. C. &Podolsky, R. J. (1969) Force measurements in skinned muscle fibers.J. Physiol., Lond. 200, 807–19.Google Scholar
  43. Hill, D. K. (1968) Tension due to interaction between the sliding filaments in resting striated muscle. The effect of stimulation.J. Physiol., Lond. 199, 637–84.Google Scholar
  44. Hill, T. L. (1952) Some statistical mechanical models of elastic polyelectrolytes and proteins.J. Chem. Phys. 70, 1259–73.Google Scholar
  45. Hill, T. L. (1983) Two elementary models for the regulation of skeletal muscle contraction by calcium.Biophys. J. 44, 383–96.Google Scholar
  46. Hill, T. L., Eisenberg, E. &Greene, L. (1980) Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex.Proc. natn. Acad. Sci. U.S.A. 77, 3186–90.Google Scholar
  47. Hill, T. L., Eisenberg, E. &Greene, L. E. (1983) Alternate model for the cooperative equilibrium binding of myosin subfragment-1-nucleotide complex to actin-troponin-tropomyosin.Proc. natn. Acad. Sci. U.S.A. 80, 60–4.Google Scholar
  48. Hitchcock, S. E. (1975) Regulation of muscle contraction: Binding of troponin and its components to actin and tropomyosin.Eur. J. Biochem. 52, 255–63.Google Scholar
  49. Hitchcock, S. E., Zimmerman, C. J. &Smalley, C. (1981) Study of the structure of troponin-T by measuring the relative reactivities of lysines with acetic anhydride.J. molec. Biol. 147, 125–51.Google Scholar
  50. Horwitz, J., Bullard, B. &Mercola, D. (1979) Interaction of troponin subunits. The interaction between the inhibitory and tropomyosin-binding subunits.J. biol. Chem. 254, 350–55.Google Scholar
  51. Hozumi, T. &Muhlrad, A. (1981) Reactive lysyl of myosin subfragment 1: Location on the 27 K fragment and labeling properties.Biochemistry 20, 2945–50.Google Scholar
  52. Huxley, A. F. &Simmons, R. M. (1971) Proposed mechanism of force generation in striated muscle.Nature, Lond. 233, 533–8.Google Scholar
  53. Huxley, H. E. (1969) The mechanism of muscular contraction.Science, N. Y. 164, 1356–66.Google Scholar
  54. Huxley, H. E. (1972) Structural changes in the actin and myosin containing filaments during contraction.Cold Spring Harb. Symp. quant. Biol. 37, 361–76.Google Scholar
  55. Huxley, H. E. (1982) Molecular basis of contraction in cross-striated muscles and relevance to the motile mechanisms in other cells. InMuscle and Nonmuscle Matility (edited byStracher, A.) pp. 1–104. New York: Academic Press, Inc.Google Scholar
  56. Huxley, H. E. &Brown, W. (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor.J. molec. Biol. 30, 383–434.Google Scholar
  57. Huxley, H. E., Faruqi, A. R., Bordas, J., Koch, M. H. J. &Mitch, J. R. (1980) The use of synchrotron radiation in time-resolved X-ray diffraction studies of myosin layer-line reflections during muscle contraction.Nature, Lond. 284, 140–3.Google Scholar
  58. Huxley, H. E., Simmons, R. M., Faruqi, A. R., Kress, M., Bordas, J. &Koch, M. H. J. (1983) Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implications.J. molec. Biol. 169, 469–506.Google Scholar
  59. Julian, F. J. (1971) The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres.J. Physiol., Lond. 218, 117–45.Google Scholar
  60. King, R. T. &Greene, L. E. (1985) Regulation of the adenosinetriphosphatase activity of cross-linked actinmyosin subfragment 1 by troponin-tropomyosin.Biochemistry 24, 7009–14.Google Scholar
  61. Labbé, J.-P., Mornet, D., Roseau, G. &Kassab, R. (1982) Cross-linking of F-actin to skeletal myosin subfragment 1 with Bis(imido esters): Further evidence for the interaction of myosin-head heavy chain with an actin dimer.Biochemistry 21, 6897–902.Google Scholar
  62. Leavis, P. C., Rosenfeld, S. S., Gergely, J., Grabarek, Z. &Drabikowski, W. (1978) Proteolytic fragments of troponin-C. Localization of high and low affinity Ca2+ binding sites and interactions with troponin I and troponin T.J. biol. Chem. 253, 5452–9.Google Scholar
  63. Lehrer, S. S. &Morris, E. P. (1982) Dual effects of tropomyosin and troponin-tropomyosin on actomyosin subfragment 1 ATPase.J. biol. Chem. 257, 8073–80.Google Scholar
  64. Lovell, S. J. &Winzor, D. J. (1977) Self-association of troponin.Biochem. J. 167, 131–6.Google Scholar
  65. Lymn, R. W. (1975) Low angle X-ray diagrams from skeletal muscle: The effect of AMP-PNP, a non-hydrolyzed analogue of ATP.J. molec. Biol. 99, 567–82.Google Scholar
  66. Lymn, R. W. &Taylor, E. W. (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin.Biochemistry 10, 4617–24.Google Scholar
  67. McCubbin, W. D. &Kay, C. M. (1980) Calcium induced conformational changes in the troponin-tropomyosin complexes of skeletal and cardiac muscle and their roles in the regulation of contraction-relaxation.Acc. Chem. Res. 13, 185–92.Google Scholar
  68. McLachlan, A. D. (1984) Structural implications of the myosin amino acid sequence.A. Rev. Biophys. Bioeng. 13, 167–89.Google Scholar
  69. Mahmood, R. &Yount, R. G. (1984) Photochemical probes of the active site of myosin. Irradiation of trapped 3′-o-(4-benzoyl)benzoyladenosine 5′-triphosphate labels the 50-kilodalton heavy chain tryptic peptide.J. biol. Chem. 259, 12956–9.Google Scholar
  70. Marston, S. &Tregear, R. T. (1974) Calcium binding and the activation of fibrillar insect flight muscle.Biochim. biophys. Acta 347, 311–18.Google Scholar
  71. Mendelson, R. A. &Wilson, M. G. A. (1982) Three-dimensional disorder of dipolar probes in a helical array. Application to muscle cross-bridges.Biophys. J. 39, 221–7.Google Scholar
  72. Miller, A. &Tregear, R. T. (1972) Structure of insect fibrillar flight muscle in the presence and absence of ATP.J. molec. Biol. 70, 85–104.Google Scholar
  73. Monod, J., Wyman, J. &Changeux, J. (1965) On the nature of allosteric transitions: A plausible model.J. molec. Biol. 12, 88–118.Google Scholar
  74. Mornet, D., Bertrand, R., Pantel, P., Audemard, E. &Kassab, R. (1981) Structure of the actin-myosin interface.Nature, Lond. 292, 301–6.Google Scholar
  75. Mornet, D., Pantel, R., Bertrand, R., Audemard, E. &Kassab, R. (1980) Localization of the reactive trinitrophenylated lysyl residue of myosin ATPase site in the NH2-terminal (27K domain) of S1 heavy chain.FEBS Lett. 117, 183–8.Google Scholar
  76. Murray, J. M., Knox, M. K., Trueblood, C. E. &Weber, A. (1980) Do tropomyosin and myosin compete for actin sites in the presence of calcium?FEBS Lett. 114, 169–73.Google Scholar
  77. Murray, J. M., Knox, M. K., Trueblood, C. E. &Weber, A. (1982) Potentiated state of the tropomyosin actin filament and nucleotide-containing myosin subfragment 1.Biochemistry 21, 906–15.Google Scholar
  78. Murray, J. M., Weber, A. &Knox, M. K. (1981) Myosin subfragment 1 binding to relaxed actin filaments and steric model of relaxation.Biochemistry 20, 641–9.Google Scholar
  79. Nagashima, H. &Asakura, S. (1982) Studies on co-operative properties of tropomyosin-actin and tropomyosin-troponin-actin complexes by the use ofN-ethylmaleimide-treated and untreated species of myosin subfragment 1.J. molec. Biol. 155, 409–28.Google Scholar
  80. Naylor, G. R. S. &Podolsky, R. J. (1981) X-ray diffraction of strained muscle fibers in rigor.Proc. natn. Acad. Sci. U.S.A. 78, 5559–63.Google Scholar
  81. O'Brien, E. J., Counch, J., Johnson, G. R. P. &Morris, E. P. (1983) Structure of actin and thin filament. InActin: Its Structure and Function in Muscle and Non-Muscle Cells (edited byDos Remedios, C. G. andBarden, J. A.), pp. 3–16. Sydney, Australia: Academic Press, Inc.Google Scholar
  82. Parry, D. A. D. &Squire, J. M. (1973) The structural role of tropomyosin in muscle regulation: Analysis of the X-ray diffraction patterns from relaxed and contracting muscles.J. molec. Biol. 75, 33–55.Google Scholar
  83. Perry, S. V. (1979) The regulation of contractile activity in muscle.Biochem. Soc. Trans. 7, 593–617.Google Scholar
  84. Perry, S. V., Cole, H. A., Head, J. F. &Wilson, F. J. (1972) Localization and mode of action of the inhibitory protein component of the troponin complex.Cold Spring Harb. Symp. quant. Biol. 37, 251–62.Google Scholar
  85. Pollard, T. D., Weeds, A. G. &Huxley, H. E. (1985) A rapid-freezing/stopped flow method to prepare the intermediates in the actin-myosin ATPase cycle for electron microscopy.Biophys. J. 47, 129a.Google Scholar
  86. Potter, J. D. &Gergely, J. (1974) Troponin, tropomyosin and actin interactions in the Ca2+ regulation of muscle contraction.Biochemistry 13, 2697–703.Google Scholar
  87. Potter, J. D. &Gergely, J. (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase.J. biol. Chem. 250, 4628–33.Google Scholar
  88. Potter, J. D. &Johnson, J. D. (1982) Troponin. InCalcium and Cell Function, Vol. II (edited byCheung, Y.), pp. 145–73. New York: Academic Press, Inc.Google Scholar
  89. Poulsen, F. R. &Lowy, J. (1983) Small-angle X-ray scattering from myosin heads in relaxed and rigor frog skeletal muscle.Nature, Lond. 303, 146–52.Google Scholar
  90. Reedy, M. K. (1968) Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice.J. molec. Biol. 31, 155–76.Google Scholar
  91. Reedy, M. K., Holmes, K. C. &Tregear, R. T. (1965) Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle.Nature, Lond. 207, 1276–80.Google Scholar
  92. Reisler, E., Burke, M. &Harrington, W. F. (1974) Cooperative role of two sulfhydryl groups in myosin adenosine triphosphatase.Biochemistry 13, 2014–22.Google Scholar
  93. Reuben, I. P., Brandt, P. W., Berman, M. &Grundfest, H. (1971) Regulation of tension in the skinned crayfish muscle fiber. I. Contraction and relaxation in the absence of Ca (pCa > 9).J. gen. Physiol. 57, 385–407.Google Scholar
  94. Rome, E. (1972) Relaxation of glycerinated muscle: Low-angle X-ray diffraction studies.J. molec. Biol. 65, 331–45.Google Scholar
  95. Schoenberg, M., Brenner, B., Chalovich, J. M., Greene, L. E. &Eisenberg, E. (1984) Cross-bridge attachment in relaxed muscle. InContractile Mechanisms in Muscle (edited byPollack, G. H. andSugi, H.), pp. 269–84. New York: Plenum Publishing Corp.Google Scholar
  96. Seidel, J. C., Chopek, M. &Gergely, J. (1970) Effect of nucleotides and pyrophosphate labels bound to S1 thiol groups of myosin.Biochemistry 9, 3265–72.Google Scholar
  97. Smith-Gill, S. J., Lavoie, T. B. &Mainhart, C. R. (1984) Antigenic regions defined by monoclonal antibodies correspond to structural domains of avian lysozyme.J. Immun. 133, 384–93.Google Scholar
  98. Smith-Gill, S. J., Wilson, A. C., Potter, M., Prager, E. M., Feldmann, R. J. &Mainhart, C. R. (1982) Mapping the antigenic epitope for a monoclonal antibody against lysozyme.J. Immun. 128, 314–22.Google Scholar
  99. Squire, J. M. (1975) Muscle filament structure and muscle contraction.A. Rev. Biophys. Bioeng. 4, 137–63.Google Scholar
  100. Squire, J. M. (1981) Thin filament structure and function. InThe Structural Basis of Muscular Contraction, pp. 157–218. New York: Plenum Press.Google Scholar
  101. Stewart, M., Kensler, R. W. &Levine, R. J. C. (1981) Structure ofLimulus telson muscle thick filaments.J. molec. Biol. 153, 781–90.Google Scholar
  102. Suck, D., Kabsch, W. &Mannherz, H. G. (1981) Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNase I at 6 Å resolution.Proc. natn. Acad. Sci. U.S.A. 78, 4319–23.Google Scholar
  103. Sutoh, K. (1982) Identification of myosin-binding sites on the actin sequence.Biochemistry 21, 3654–61.Google Scholar
  104. Syska, H., Wilkinson, J. M., Grand, R. J. A. &Perry, S. V. (1976) The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit.Biochem. J. 153, 375–87.Google Scholar
  105. Szilagyi, L., Bálint, M., Sréter, F. A. &Gergely, J. (1979) Photoaffinity labeling with an ATP analog of theN-terminal peptide of myosin.Biochem. Biophys. Res. Commun. 87, 936–45.Google Scholar
  106. Tajima, Y., Kamiya, K. &Seto, T. (1983) X-ray structure analysis of thin filaments of a molluscan smooth muscle in the living relaxed state.Biophys. J. 43, 335–43.Google Scholar
  107. Taylor, K. A. &Amos, L. A. (1981) A new model for the geometry of the binding of myosin crossbridges to muscle thin filaments.J. molec. Biol. 147, 297–324.Google Scholar
  108. Taylor, K. A. &Amos, L. A. (1983) Structure of actin in reconstructed images of S-1 decorated filaments: A further comment. InActin: Structure and Function in Muscle and Non-Muscle Cells (edited byDos Remedios, C. G. andBarden, J. A.), pp. 25–6. Sydney, Australia: Academic Press, Inc.Google Scholar
  109. Thomas, D. D. &Cooke, R. (1980) Orientation of spin-labeled myosin heads in glycerinated muscle fibers.Biophys. J. 32, 891–906.Google Scholar
  110. Thomas, D. D., Ishiwata, S., Seidel, J. C. &Gergely, J. (1980) Submillisecond rotational dynamics of spinlabeled myosin heads in myofibrils.Biophys. J. 32, 873–89.Google Scholar
  111. Todd, P. E. E., East, I. J. &Leach, S. J. (1982) The immunogenicity and antigenicity of proteins.TIBS 7, 212–6.Google Scholar
  112. Vibert, P. &Craig, R. (1982) Three-dimensional reconstruction of thin filaments decorated with a Ca2+-regulated myosin.J. molec. Biol. 157, 299–319.Google Scholar
  113. Wagner, P. D. (1984) Effect of skeletal muscle myosin light chain 2 on the Ca2+-sensitive interaction of myosin and heavy meromyosin with regulated actin.Biochemistry 23, 5950–6.Google Scholar
  114. Wagner, P. D. &Giniger, E. (1981) Calcium-sensitive binding of heavy meromyosin to regulated actin in the presence of ATP.J. biol. Chem. 256, 12647–50.Google Scholar
  115. Wagner, P. D. &Stone, D. B. (1983) Calcium-sensitive binding of heavy meromyosin to regulated actin requires light chain 2 and the head-tail junction.Biochemistry 22, 1334–42.Google Scholar
  116. Wakabayashi, T., Huxley, H. E., Amos, L. A. &Klug, A. (1975) Three-dimensional image reconstruction of actin-tropomyosin complex and actin-tropomyosin-troponin T-troponin I complex.J. molec. Biol. 93, 477–97.Google Scholar
  117. Wakabayashi, T. &Toyoshima, C. (1981) Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. II. The multi-domain structure of actin-myosin S1 complex.J. Biochem., Tokyo 90, 683–701.Google Scholar
  118. Wakabayashi, T., Toyoshima, C. &Hosoi, M. (1983) Image analysis of actin-tropomyosin-myosin S-1. InActin: Structure and Function in Muscle and Non-Muscle Cells (edited byDos Remedios, C. G. andBarden, J. A.), pp. 27–34. Sydney, Australia: Academic Press, Inc.Google Scholar
  119. Weeks, R. A. &Perry, S. V. (1977) A region of the troponin C molecule involved in interaction with troponin I.Biochem. Soc. Trans. 5, 1391–2.Google Scholar
  120. Wells, J. A., Werber, M. M., Legg, J. I. &Yount, R. G. (1979a) Inactivation of myosin subfragment one by cobalt (II)/cobalt (III) phenanthroline complexes. 1. Incorporation of Co(III) byin situ oxidation of Co(II).Biochemistry 18, 4793–9.Google Scholar
  121. Wells, J. A., Werber, M. M. &Yount, R. G. (1979b) Inactivation of myosin subfragment 1 by cobalt (II)/cobalt (III) phenanthroline complexes. 2. Cobalt chelation of two critical SH groups.Biochemistry 18, 4800–5.Google Scholar
  122. Wells, J. A. &Yount, R. G. (1979) Active site trapping of nucleotides by cross-linking two sulfhydryls in myosin subfragment 1.Proc. natn. Acad. Sci. U.S.A. 76, 4966–70.Google Scholar
  123. Wells, J. A. &Yount, R. G. (1980) Reaction of 5,5′-dithiobis(2-nitrobenzoic acid) with myosin subfragment one: Evidence for formation of a single protein disulfide with trapping of metal nucleotide at the active site.Biochemistry 19, 1711–7.Google Scholar
  124. Wells, J. A. &Yount, R. G. (1982) Chemical modification of myosin by active-site trapping of metal-nucleotides with thiol cross-linking reagents. InMethods in Enzymology (edited byFrederiksen, D. W. andCunningham, L. W.) Vol. 85, pp. 93–116. New York: Academic Press, Inc.Google Scholar
  125. Williams, D. L., Jr. &Greene, L. E. (1983) Comparison of the effects of tropomyosin and troponin-tropomyosin on the binding of myosin subfragment 1 to actin.Biochemistry 22, 2770–4.Google Scholar
  126. Williams, D. L., Jr. &Swenson, C. A. (1982) Disulfide bridges in tropomyosin. Effect on ATPase activity of actomyosin.Eur. J. Biochem. 127, 495–9.Google Scholar
  127. Wray, J. S., Vibert, P. J. &Cohen, C. (1975) Diversity of cross-bridge configurations in invertebrate muscles.Nature, Lond. 257, 561–4.Google Scholar
  128. Yanagida, T. (1981) Angles of nucleotides bound to cross-bridges in glycerinated muscle fiber at various concentrations of ɛ-ATP, ɛ-ADP and ɛ-AMP.PNP detected by polarized fluorescence.J. molec. Biol. 146, 539–60.Google Scholar
  129. Yanagida, T. (1985) Angle of active site of myosin heads in contracting muscle during sudden length changes.J. Musc. Res. Cell Motility 6, 43–52.Google Scholar
  130. Yanagida, T., Kuranaga, I. &Inoué, A. (1982) Interaction of myosin with thin filaments during contraction and relaxation: Effect of ionic strength.J. Biochem., Tokyo 92, 407–12.Google Scholar
  131. Yang, Y.-Z., Korn, E. D. &Eisenberg, E. (1979) Binding of tropomyosin to co-polymers ofAcanthamoeba actin and muscle actin.J. biol. Chem. 254, 2084–8.Google Scholar
  132. Zot, H. G., Güth, K. &Potter, J. D. (1985) Measurement of fluorescence and tension development in skinned skeletal muscle fibers reconstituted with TnCDANZ.Biophys. J. 47, 473a.Google Scholar
  133. Zot, H. G. &Potter, J. D. (1984) The role of calcium in the regulation of the skeletal muscle contraction-relaxation cycle. InMetal Ions in Biological Systems (edited bySiegel, H.), pp. 381–410. New York: Marcel Dekker.Google Scholar

Copyright information

© Chapman and Hall Ltd 1986

Authors and Affiliations

  • Saleh C. El-Saleh
    • 1
  • Kimbrough D. Warber
    • 1
  • James D. Potter
    • 1
  1. 1.Department of Pharmacology, School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations