Skip to main content
Log in

The reconstruction of myosin filaments in rabbit psoas muscle from solubilized myosin

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Using rabbit psoas muscle strips, A-bands with their myosin-containing thick filaments have been substantially reconstructedin situ (as judged by electron and light microscopy and by low-angle X-ray diffraction analysis) after prior solubilization of the myosin filaments in high ionic strength potassium phosphate solution. The maintenance of a very high local concentration of soluble myosin, by means of a closely apposed artificial semi-permeable membrane is necessary for reconstruction of full-length filaments. This reconstruction effect can be totally abolished by pre-glycerolation of the muscle, or (reversibly) by pre-depletion of Ca2+. Reconstruction at longer sarcomere lengths (>2.6μm) is anomalous, part-length ‘stub filaments’ being formed, with their stub tails projecting out from the I-Z-I lattice. A model is proposed to explain this reconstruction effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burke, M. &Harrington, W. F. (1972) Geometry of the myosin dimer in high-salt media. II. Hydrodynamic studies on macromodels of myosin and its rod fragments.Biochemistry 11, 1456–62.

    Google Scholar 

  • Craig, R. &Offer, G. (1976) The location of C-protein in rabbit skeletal muscle.Proc. R. Soc. Ser. B. 192, 451–61.

    Google Scholar 

  • Davis, J. S., Buck, J. &Greene, E. P. (1982) The myosin dimer: an intermediate in the self-assembly of the thick filament of vertebrate skeletal muscle.FEBS Lett. 140, 293–7.

    Google Scholar 

  • Dos Remedios, C. G. &Gilmour, D. (1978) Is there a third type of filament in striated muscles?J. Biochem. 84, 235–8.

    Google Scholar 

  • Durham, A. C., Finch, J. T. &Klug, A. (1971) States of aggregation of tobacco mosaic virus protein.Nature, New Biol. 229, 37–42.

    Google Scholar 

  • Durham, A. C. &Klug, A. (1971) Polymerisation of tobacco mosaic virus protein and its control.Nature, New Biol. 229, 42–7.

    Google Scholar 

  • Emes, C. H. (1978)Myofilament and molecule: a study on myosin. Ph.D. Thesis, University of Leicester, Leicester, U.K.

    Google Scholar 

  • Emes, C. H. &Rowe, A. J. (1978) Frictional properties and molecular weight of native and synthetic myosin filaments from vertebrate skeletal muscle.Biochim. biophys. Acta 537, 125–44.

    Google Scholar 

  • Hattori, A. &Takahashi, K. (1979) Studies on the post-mortem fragmentation of myofibrils.J. Biochem. 85, 47–56.

    Google Scholar 

  • Hodgkin, A. L. &Horowicz, P. (1957) The influence of potassium and chloride ions on the membrane potential of single muscle fibres.J. Physiol., Lond. 148, 127–60.

    Google Scholar 

  • Huxley, H. E. (1963) Electron microscopic studies on the structure of natural and synthetic protein filaments from striated muscle.J. molec. Biol. 7, 281–308.

    Google Scholar 

  • Huxley, A. F. &Simmons, R. M. (1972) Proposed mechanism of force generation in striated muscle.Nature, Lond. 233, 533–8.

    Google Scholar 

  • Kaminer, B. &Bell, A. L. (1966) Myosin filamentogenesis: effects of pH and ionic concentration.J. molec. Biol. 20, 391–401.

    Google Scholar 

  • Katsura, I. &Noda, H. (1971) Studies on the formation and physical chemical properties of synthetic myosin filaments.J. Biochem. 69, 219–29.

    Google Scholar 

  • Katsura, I. &Noda, H. (1973) Further studies on the formation of reconstituted myosin Filaments,J. Biochem. 73, 245–56.

    Google Scholar 

  • Koretz, J. F. (1979a) Structural studies of synthetic filaments prepared from column-purified myosin.Biophys. J. 27, 423–32.

    Google Scholar 

  • Koretz, J. F. (1979b) Effects of C-protein on synthetic myosin filament structure.Biophys. J. 27, 433–46.

    Google Scholar 

  • Lazarides, E. &Granger, B. L. (1978) Fluorescent localisation of membrane sites in glycerinated chicken skeletal muscle fibres and the relationship of these sites to the protein composition of the Z disc.Proc. natn. Acad. Sci. U.S.A. 75, 3683–7.

    Google Scholar 

  • Maw, M. C. (1982)A-filaments: structure and reconstruction. Ph.D. thesis, University of Leicester, Leicester, U.K.

    Google Scholar 

  • Maw, M. C. &Rowe, A. J. (1980) Fraying of A-filaments into three subfilaments.Nature, Lond. 286, 412–4.

    Google Scholar 

  • Mihalyi, E. &Rowe, A. J. (1966) Studies on the extraction of actomyosin from rabbit muscle.Biochem. Z. 345, 267–85.

    Google Scholar 

  • Niederman, R. &Peters, L. K. (1982) Native bare zone assemblages nucleate myosin filament assembly.J. molec. Biol. 161, 505–17.

    Google Scholar 

  • Oosawa, F., Kasai, M., Hantano, S. &Asakura, S. (1966) InPrinciples of Biomolecular Organisation (edited byWolstenholme, G. E. W. andO'Connor, M.). Ciba Foundation Symposium, pp. 273–303. London: Churchill.

    Google Scholar 

  • Persechini, A. &Rowe, A. J. (1984) Modulation of myosin filament conformation by physiological levels of divalent cation.J. molec. Biol. 172, 23–39.

    Google Scholar 

  • Pinset-Harstrom, I. &Truffy, J. (1979) Effect of adenosine triphosphate, inorganic phosphate and divalent cations on the size and structure of synthetic myosin filaments. An electron microscopic study.J. molec. Biol. 134, 173–88.

    Google Scholar 

  • Reisler, E., Smith, C. &Seegan, G. (1980) Myosin minifilaments.J. molec. Biol. 143, 129–45.

    Google Scholar 

  • Reynold, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy.J. Cell Biol. 17, 208–13.

    Google Scholar 

  • Rowe, A. J. &Maw M. C. (1984) InContractile Mechanisms in Muscle Contraction (edited byPollack, G. H. andSugi, H.), pp. 5–20. Seattle: Plenum.

    Google Scholar 

  • Spurr, A. R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy.J. Ultrastruct. Res. 26, 31–43.

    Google Scholar 

  • Tanaka, M. &Tanaka, H. (1979) Extraction and functional reformation of thick filaments in chemically skinned molluscan catch muscle fibres.J. Biochem. 85, 535–40.

    Google Scholar 

  • Taniguchi, M. &Ishikawa, H. (1982)In situ reconstitution of myosin filaments within the myosin-extracted myofibril in cultured skeletal muscle cells.J. Cell Biol. 92, 324–32.

    Google Scholar 

  • Tawada, K., Yoshida, A. &Morita, K. (1976) Myosin-free ghosts of single fibers and an attempt to re-form myosin filaments in the ghost fibers.J. Biochem. 80, 121–7.

    Google Scholar 

  • Trinick, J. A. (1973)A-filaments from rabbit skeletal muscle. Ph.D. Thesis, University of Leicester, Leicester, U.K.

    Google Scholar 

  • Trinick, J. A. &Cooper, J. (1981) Sequential disassembly of vertebrate skeletal muscle thick filaments.J. molec. Biol. 151, 309–14.

    Google Scholar 

  • Wang, K., McClure, J. &Tu, A. (1980) Titin: major myofibrillar components of striated muscle.Proc. natn. Acad. Sci. U.S.A. 76, 3698–702.

    Google Scholar 

  • Weisenberg, R. C. (1980) Role of co-operative interactions, microtubule-associated proteins and guanosine triphosphate in microtubule assembly: a model.J. molec. Biol. 139, 660–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maw, M.C., Rowe, A.J. The reconstruction of myosin filaments in rabbit psoas muscle from solubilized myosin. J Muscle Res Cell Motil 7, 97–109 (1986). https://doi.org/10.1007/BF01753410

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01753410

Keywords

Navigation