Skip to main content

The propensity to disrupt and the disruption nucleolus of a characteristic function game


Gately [1974] recently introduced the concept of an individual player's “propensity to disrupt” a payoff vector in a three-person characteristic function game. As a generalisation of this concept we propose the “disruption nucleolus” of ann-person game. The properties and computational possibilities of this concept are analogous to those of the nucleolus itself. Two numerical examples are given.

This is a preview of subscription content, access via your institution.


  1. Gately, D.: Sharing the Gains from Regional Cooperation: a Game Theoretic Application to Planning Investment in Electric Power. International Economic Review15 (1), 1974, 195–208.

    Google Scholar 

  2. Grotte, J.M.: Computation of and Observations on the Nucleolus, the Normalised and the Central Game. M.Sc. Thesis, Department of Applied Mathematics, Cornell University, September 1970.

  3. Kopelowitz, A.: Computation of the Kernels of Simple Games and the Nucleolus ofN-Person Games. RM No. 31, Research Program in Game Theory and Mathematical Economics, Department of Mathematics, Hebrew University of Jerusalem, September 1967.

  4. Littlechild, S.C.: A Simple Expression for the Nucleolus in a Special Case. International Journal of Game Theory3 (1), 1974, 21–29.

    Google Scholar 

  5. Schmeidler, D.: The Nucleolus of a Characteristic Function Game. SIAM Journal of Applied Mathematics17 (6), 1969, 1163–1170.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Littlechild, S.C., Vaidya, K.G. The propensity to disrupt and the disruption nucleolus of a characteristic function game. Int J Game Theory 5, 151–161 (1976).

Download citation


  • Characteristic Function
  • Economic Theory
  • Game Theory
  • Payoff Vector
  • Individual Player