Skip to main content
Log in

Variation in average unit chain length of glycogen in relation to developmental stage in Blastocladiella emersonii

  • General and Review Articles
  • a. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Synchronous, single generations ofBlastocladiella emersonii were grown along either the ordinary colorless or resistant sporangial plant pathways. Samples of cells were withdrawn at different developmental stages and glycogen was extracted, purified, debranched by isoamylase treatment, and its component unit chains separated by gel permeation chromatography. The elution profiles showed the distribution of unit chains. Average unit chain length was determined for plants at different developmental stages and shown to vary between 9 and 16. Some of these variations were correlated with other developmental events in the fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CL:

denotes the number of glucosyl units per unit chain of glycogen

\(\overline {CL} \) :

denotes the average unit chain length of glycogen

α :

Amylase or 1,4-α-d-glucan glucanohydrolase EC 3.2.1.1

β :

Amylase or 1,4-α-d-glucan maltohydrolase EC 3.2.1.2

Glucoamylase:

1,4-α-d-glucan glucohydrolase EC 3.2.1.3

Glucose oxidase:

β-d-glucose:oxygen 1-oxidoreductase EC 1.1.3.4

α :

Glucosidase orα-d-glucoside glucohydrolase EC 3.2.1.20

Glycogen branching enzyme or 1,4-α-d-glucan:

1,4-α-D-glucan 6-α-(1,4-α-glucano)-transferase EC 2.4.1.18

Glycogen phosphorylase or 1,4-α-d-glucan:

orthophosphateα-glucosyltransferase EC 2.4.1.1

Glycogen synthase or UDP glucose:

glycogen 4-α-glucosyltransferase EC 2.4.1.11

Isoamylase:

glycogen 6-glucanohydrolase EC 3.2.1.68

Peroxidase or donor:

hydrogen-peroxide oxidoreductase EC 1.11.1.7

References

  1. Stacey, M. & Barker, S. A., Polysaccharides of microorganisms. Clarendon Press, Oxford (1960).

    Google Scholar 

  2. Gorin, P. A. J. & Spencer, J. F. T., Structural chemistry of fungal polysaccharides. Advan. Carbohyd. Chem. 23, 367–417 (1968).

    Google Scholar 

  3. Northcote, D. H., The molecular structure and shape of yeast glycogen. Biochem. J. 53, 348–352 (1953).

    Google Scholar 

  4. Bhavanandan, V. P., Bouveng, H. O. & Lindberg, B., Polysaccharides fromPolyporus giganteus. Acta Chem. Scand. 18, 504–512 (1964).

    Google Scholar 

  5. Cantino, E. C. & Goldstein, A., Bicarbonate-induced synthesis of polysaccharide during morphogenesis by synchronous, single generations ofBlastocladiella emersonii. Arch. Mikrobiol. 39, 43–52 (1961).

    Google Scholar 

  6. Goldstein, A. & Cantino, E. C., Light-stimulated polysaccharide and protein synthesis by synchronized, single generations ofBlastocladiella emersonii. J. gen. Microbiol. 28, 689–699 (1962).

    Google Scholar 

  7. Lessie, P. E. & Lovett, J. S., Ultrastructural changes during sporangium formation and zoospore differentiation inBlastocladiella emersonii. Amer. J. Bot. 55, 220–236 (1968).

    Google Scholar 

  8. Camargo, E. P., Meuser, R. & Sonneborn, D., Kinetic analyses of the regulation of glycogen synthetase activity in zoospores and growing cells of the water mold,Blastocladiella emersonii. J. biol. Chem. 244, 5910–5919 (1969).

    Google Scholar 

  9. Rothman, L. B. & Cabib, E., Allosteric properties of yeast glycogen synthetase. I. General kinetic study Biochemistry 6, 2098–2106 (1967).

    Google Scholar 

  10. Rothman, L. B. & Cabib, E., Allosteric properties of yeast glycogen synthetase. II. The effect of pH on inhibition and its physiological implications. Biochemistry 6, 2107–2112 (1967).

    Google Scholar 

  11. Rothman, L. B. & Cabib, E., Regulation of glycogen synthesis in the intact yeast cell. Biochemistry 8, 3332–3341 (1969).

    Google Scholar 

  12. Fosset, H., Muir, L. W., Nielsen, L. D. & Fischer, E. H., Purification and properties of yeast glycogen phosphorylasea andb. Biochemistry 10, 4105–4113 (1971).

    Google Scholar 

  13. Gunja-Smith, Z., Marshall, J. J., Mercier, C., Smith, E. E. & Whelan, W. J., A revision of the Meyer-Bernfeld model of glycogen and amylopectin. FEBS Letters 12, 101–104 (1970).

    Google Scholar 

  14. Gunja-Smith, Z., Marshall, J. J. & Smith E. E., Enzymatic determination of the unit chain length of glycogen and related polysaccharides. FEBS Letters 13, 309–311 (1971).

    Google Scholar 

  15. Akai, H., Yokobayashi, K., Misaki, A. & Harada, T., Complete hydrolysis of branching linkages in glycogen byPseudomonas isoamylase: Distribution of linear chains. Biochim. biophys. Acta (Amst.) 237, 422–429 (1971).

    Google Scholar 

  16. Weber, M. & Wöber, G., The fine structure of the branchedα-glucan from the blue-green algaAnacystis nidulans: Comparison with other bacterial glycogens and phytoglycogen. Carbohyd. Res. 39, 295–302 (1975).

    Google Scholar 

  17. Harada, T., Yokobayashi, K. & Misaki, A., Formation of isoamylase byPseudomonas. Appl. Microbiol. 16, 1439–1444 (1968).

    Google Scholar 

  18. Yokobayashi, K., Misaki, A. and Harada, T., Purification and properties ofPseudomonas isoamylase. Biochim. biophys. Acta (Amst.) 212, 458–469 (1970).

    Google Scholar 

  19. Gunja-Smith, Z., Marshall, J. J., Smith, E. E. & Whelan, W. J., A glycogen-debranching enzyme fromCytophaga. FEBS Letters 12, 96–100 (1970).

    Google Scholar 

  20. Cantino, E. C., Morphogenesis in aquatic fungi. In: The Fungi, (Ainsworth, G. C. and Sussman, A. S., eds.) Vol. 2, pp. 283–337, Academic Press, New York (1966).

    Google Scholar 

  21. Myers, R. B. & Cantino, E. C., DNA profile of the spore ofBlastocladiella emersonii: evidence forγ-particle DNA. Arch. Mikrobiol. 78, 252–267 (1971).

    Google Scholar 

  22. Lovett, J. S. & Cantino, E. C., The relation between biochemical and morphological differentiation inBlastocladiella emersonii. II. Amer. J. Bot. 47, 550–560 (1960).

    Google Scholar 

  23. Strange, R. E., Dark, F. A. & Ness, A. G., The survival of stationary phaseAerobacter aerogenes stored in aqueous suspension. J. gen. Microbiol. 25, 61–76 (1961).

    Google Scholar 

  24. Fleming, I. D. & Stone, B. A., Fractionation ofAspergillus niger amyloglucosidase. Biochem. J. 97, 13 P (1965).

    Google Scholar 

  25. Marshall, J. J. & Whelan, W. J. Incomplete conversion of glycogen and starch by crystalline amyloglucosidase and its importance in the determination of amylaceous polymers. FEBS Letters 9, 85–88 (1970).

    Google Scholar 

  26. Robyt, J. F. & Whelan, W. J., Theα-amylases. In: Starch and its derivates, 4th ed. (Radley, J. A., ed.) pp. 430–476. Chapman and Hall, London (1968).

    Google Scholar 

  27. Bernfeld, P., Amylases,α andβ. In: Methods in Enzymology, (Colowick, S. P. and Kaplan, N. O., eds.) Vol. 1, pp. 149–158, Academic Press, New York (1955).

    Google Scholar 

  28. Marshall, J. J. & Whelan, W. J., Removal ofα-glucosidase impurity from crystalline sweet potatoβ-amylase. Anal. Biochem. 52, 642–646 (1973).

    Google Scholar 

  29. Krisman, C. R., A method for the colorimetric estimation of glycogen with iodine. Anal. Biochem. 4, 17–23 (1962).

    Google Scholar 

  30. Trevelyan, W. E., Procter, D. P. & Harrison, J. S., Detection of sugars on paper chromatograms. Nature (London) 166, 444–445 (1950).

    Google Scholar 

  31. Marshall, J. J. & Whelan, W. J., Detection of endo-acting carbohydrases, particularly in the presence of exoenzymes acting on the same substrate. Anal. Biochem. 43, 316–321 (1971).

    Google Scholar 

  32. Chao, L. & Bowen, C. C., Purification and properties of glycogen isolated from a blue-green alga,Nostoc muscorum. J. Bact. 105, 331–338 (1971).

    Google Scholar 

  33. Palmer, T. N. & Ryman, B. E., The regulatory role of amylo-1,6-glucosidase/oligo-1,4 → 1,4-glucantransferase in liver glycogen metabolism. FEBS Letters 18, 277–279 (1971).

    Google Scholar 

  34. Ryman, B. & Whelan, W. J., New aspects of glycogen metabolism. Advan. Enzymol. Relat. Areas Mol. Biol. 34, 285–443 (1971).

    Google Scholar 

  35. Brammer, G. L., Rougvie, M. A. & French, D., Distribution ofα-amylase-resistant regions in the glycogen molecule. Carbohyd. Res. 24, 343–354 (1972).

    Google Scholar 

  36. Pandhi, P. N. & Cantino, E. C., Differentiation of glucose 6-phosphate dehydrogenase isozymes and morphogenesis inBlastocladiella emersonii. Arch. Mikrobiol. 55, 226–244 (1966).

    Google Scholar 

  37. Cantino, E. C. & Lovett, J. S., Respiration ofBlastocladiella during bicarbonate-induced morphogenesis in synchronous culture. Physiol. Plantarum 13, 450–458 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norrman, J., Wöber, G. & Cantino, E.C. Variation in average unit chain length of glycogen in relation to developmental stage in Blastocladiella emersonii. Mol Cell Biochem 9, 141–148 (1975). https://doi.org/10.1007/BF01751309

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01751309

Keywords

Navigation