The Histochemical Journal

, Volume 20, Issue 2, pp 81–87 | Cite as

Membrane-bound Ca2+ distribution visualized by chlorotetracycline fluorescence during morphogenesis of soredia in a lichen

  • Margherita Raineri
  • Paolo Modenesi


In the lichenParmelia caperata (L.) Ach. the distribution pattern of membrane-bound Ca2+ is investigated in the symbionts by chlorotetracycline (CTC)-induced fluorescence during the development of propagative structures, the soredia. The results demonstrate that Ca2+ accumulation in the alga and the fungus is associated with this morphogenetic process; particularly, polarized hyphal growth involves a tip-to-base Ca2+ gradient.

CTC fluorescence distribution is coincident with that of cholinesterase (ChE) activity during morphogenesis of soredia. A comparison is suggested with ‘embryonic ChE’ of animal cells, where developmental events are regulated by a cholinergic mechanism that also modulates Ca2+ levels.


Distribution Pattern Cholinesterase Animal Cell Developmental Event Hyphal Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACHENBACH, F., ACHENBACH, U. & KESSLER, D. (1984) Calcium binding sites in plasmodia ofPhysarum polycephalum as revealed by the pyroantimoniate technique.J. Histochem. Cytochem. 32, 1177–84.Google Scholar
  2. BERRIDGE, M. J. & IRVINE, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction.Nature 312, 315–21.Google Scholar
  3. BRAWLEY, S. H. & ROBINSON, K. R. (1985) Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F-actin in embryogenesis.J. Cell Biol. 100, 1173–84.Google Scholar
  4. BROWNLEE, C. & WOOD, J. W. (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells ofFucus serratus.Nature 320, 624–6.Google Scholar
  5. CASWELL, A. H. (1979) Methods for measuring intracellular calcium.Int. Rev. Cytol. 56, 145–81.Google Scholar
  6. CHEN, T.-H. & JAFFE, L. F. (1979) Forced clacium entry and polarized growth ofFunaria spores.Planta 144, 101–6.Google Scholar
  7. DETTBARN, W. D. (1962) Acetylcholinesterase activity inNitella.Nature 194, 1175–6.Google Scholar
  8. DREWS, U. (1975) Cholinesterase in embryonic development.Prog. Histochem. Cytochem. 7, 1–52.Google Scholar
  9. EVANS, M. L. (1972) Promotion of cell elongation inAvena coleoptiles by acetylcholine.Plant Physiol. 50, 414–16.Google Scholar
  10. GILROY, S., BLOWERS, D. P. & TREWAVAS, A. J. (1987) Calcium: a regulation system emerges in plant cells.Development 100, 181–4.Google Scholar
  11. GOODWIN, B. C. & PATEROMICHELAKIS, S. (1979) The role of electrical fields, ions, and the cortex in the morphogenesis ofAcetabularia.Planta 145, 427–35.Google Scholar
  12. GOODWIN, B. C., SKELTON, J. L. & KIRK-BELL, S. M. (1983) Control of regeneration and morphogenesis by divalent cations inAcetabularia mediterranea.Planta 157, 1–7.Google Scholar
  13. HOITINK, A. W. & DIJK, G. V. (1965) The influence of neurohumoral transmitter substances on protoplasmic streaming in the MyxomycetePhysarella oblonga.J. Cell Physiol. 67, 133–40.Google Scholar
  14. HOSHINO, T. (1983) Effects of acetylcholine on the growth of theVigna seedlings.Plant & Cell Physiol. 24, 551–6.Google Scholar
  15. JAFFE, M. J. (1970) Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor acetylcholine.Plant Physiol. 46, 768–77.Google Scholar
  16. JAFFE, M. J. (1972) Acetylcholine as a native metabolic regulator of phytochrome-mediated processes in bean roots. InRecent Advances in Phytochemistry. Vol. 5, (edited by RUNECKLES, V. C. & TSO, T. C.) pp. 81–104. New York, Academic Press.Google Scholar
  17. JAFFE, L. A., WEISENSEEL, M. H. & JAFFE, L. F. (1975) Calcium accumulation within the growing tips of pollen tubes.J. Cell Biol. 67, 488–92.Google Scholar
  18. KAUPPI, M. (1984) Fluorescence microscopy for the examination of different tissues in lichens and pollution effects on the algal cell layer. InAbstracts of the VIIth International Congress of Histochemistry and Cytochemistry (edited by PANULA, P., PÄIVÄRINTA, H. & SOINILA, S.) p. 187. Helsinki.Google Scholar
  19. KEITH, C. H., RATAN, R., MAXFIELD, F. R., BAJER, A. & SHELANSKI, M. L. (1985) Local cytoplasmic calcium gradients in living mitotic cells.Nature 316, 848–50.Google Scholar
  20. KROPF, D. L., LUPA, M. D. A., CALDWELL, J. H. & HAROLD, F. M. (1983) Cell polarity: endogenous ion currents precede and predict branching in the water moldAchlya.Science 220, 1385–7.Google Scholar
  21. KROPF, D. L., CALDWELL, J. H., GOW, N. A. R. & HAROLD, F. M. (1984) Transcellular ion currents in the water moldAchlya. Amino acid proton symport as a mechanism of current entry.J. Cell Biol. 99, 486–96.Google Scholar
  22. LALLEMANT, R. (1972) Etude de la formation des sorédies chez le DiscolichenBuellia canescens (Dicks.) D. Notrs.Bull. Soc. Bot. Fr. 119, 463–76.Google Scholar
  23. LEES, G. L. & THOMPSON, J. E. (1975) The effects of germination on the subcellular distribution of cholinesterase in cotyledons ofPhaseolus vulgaris.Physiol. Plant. 34, 230–7.Google Scholar
  24. MCNALLY, J. G., COWAN, J. D. & SWIFT, H. (1983) The effects of the ionophore A23187 on pattern formation in the algaMicrasterias.Dev. Biol. 97, 137–45.Google Scholar
  25. MEINDL, U. (1982) Local accumulation of membrane-associated calcium according to cell pattern formation inMicrasterias denticulata, visualized by chlorotetracycline fluorescence.Protoplasma 110, 143–6.Google Scholar
  26. MIURA, G. A. & SHIH, T.-M. (1984) Cholinergic constituents in plants: characterization and distribution of acetylcholine and choline.Physiol. Plant. 61, 417–21.Google Scholar
  27. MUKHERJEE, I. (1980) The effect of acetylcholine on hypocotyl elongation in soybean.Plant & Cell Physiol. 21, 1657–60.Google Scholar
  28. NAKAJIMA, H. & HATANO, S. (1962) Acetylcholinesterase in the plasmodium of the myxomycete,Physarum polycephalum.J. Cell. Comp. Physiol. 59, 259–64.Google Scholar
  29. OETTLING, G., SCHMIDT, H. & DREWS, U. (1985) The muscarinic receptor of chick embryo cells: correlation between ligand binding and calcium mobilization.J. Cell Biol. 100, 1073–81.Google Scholar
  30. PICTON, J. M. & STEER, M. W. (1982) A model for the mechanism of tip extension in pollen tubes.J. Theor. Biol. 98, 15–20.Google Scholar
  31. RAINERI, M. & MODENESI, P. (1986) Preliminary evidence for a cholinergic-like system in lichen morphogenesis.Histochem J. 18, 647–57.Google Scholar
  32. REISS, H.-D. & HERTH, W. (1978) Visualization of the Ca2+ gradient in growing pollen tubes ofLilium longiflorum with chlorotetracycline fluorescence.Protoplasma 97, 373–77.Google Scholar
  33. REISS, H.-D. & HERTH, W. (1979) Calcium gradients in tip growing plant cells visualized by chlorotetracycline fluorescence.Planta 146, 615–21.Google Scholar
  34. REISS, H.-D. & NOBILING, R. (1986) Quin-2 fluorescence in lily pollen tubes: distribution of free cytoplasmic calcium.Protoplasma 131, 244–6.Google Scholar
  35. RIOV, J. & JAFFE, M. J. (1973) A cholinesterase from bean roots and its inhibition by plant growth retardants.Experientia 29, 264–5.Google Scholar
  36. ROBINSON, K. R. & JAFFE, L. F. (1975) Polarizing fucoid eggs drive a calcium current through themselves.Science 187, 70–2.Google Scholar
  37. ROBINSON, K. R. & CONE, R. (1980) Polarization of fucoid eggs by a calcium ionophore gradient.Science 207, 77–8.Google Scholar
  38. SCHMIDT, H., OETTLING, G., KAUFENSTEIN, T., HARTUNG, G. & DREWS, U. (1984) Intracellular calcium mobilization on stimulation of the muscarinic cholinergic receptor in chick limb bud cells.Roux's Arch. Dev. Biol. 194, 44–9.Google Scholar
  39. TREWAVAS, A. J., SEXTON, R. & KELLY, P. (1984) Polarity, calcium and abscission: molecular bases for developmental plasticity in plants.J. Embryol. Exp. Morph. 83 Suppl., 179–95.Google Scholar
  40. WEISENSEEL, M. H., NUCCITELLI, R. & JAFFE, L. F. (1975) Large electrical currents traverse growing pollen tubes.J. Cell Biol. 66, 556–67.Google Scholar
  41. WICK, S. M. & HEPLER, P. K. (1980) Localization of Ca2+-containing antimonate precipitates during mitosis.J. Cell Biol. 86, 500–13.Google Scholar
  42. WOLNIAK, S. M., HEPLER, P. K. & JACKSON, W. T. (1980) Detection of the membrane-calcium distribution during mitosis inHaemanthus endosperm with chlorotetracycline.J. Cell Biol. 87, 23–32.Google Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • Margherita Raineri
    • 1
  • Paolo Modenesi
    • 2
  1. 1.Institute of Comparative AnatomyUniversity of GenoaGenovaItaly
  2. 2.Institute of Botany ‘Hanbury’University of GenoaGenovaItaly

Personalised recommendations