Structural optimization

, Volume 10, Issue 1, pp 54–60 | Cite as

Optimal design of disks with respect to ductile creep rupture time

  • K. Szuwalski
Technical Papers

Abstract

The problem of optimal design with respect to ductile creep rupture time for rotating disks is solved. The finite strain theory is applied, the material is described by the Norton-Bailey law generalized for true stresses and logarithmic strains. The set of four partial differential equations describing the problem is derived. The optimal shape of the disk is found using parametric optimization with one or two free parameters. The results are compared with disks of uniform thickness.

Keywords

Differential Equation Civil Engineer Partial Differential Equation Optimal Design Parametric Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gajewski, A. 1981: Effect of physical nonlinearities on optimal design structures.Proc. IUTAM Symp. on Physical Nonlinearities (held in Senlis), pp. 81–84. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  2. Ganczarski, A.; Skrzypek, J. 1989: Optimal prestressing and design of rotating disks against brittle-rupture under unsteady creep conditions.Rozpr. Inż. (Eng. trans.)37, 627–650Google Scholar
  3. Ganczarski, A.; Skrzypek, J. 1992: Optimal shape of prestressed disks in creep.Struct. Optim. 4, 47–54Google Scholar
  4. Gunneskov, O. 1976: Optimal design of rotating disks in creep.J. Struct. Mech. 2, 141–160Google Scholar
  5. Hoff, N.J. 1953: The necking and rupture of rods subjected to constant tensile loads.J. Appl. Mech. Trans. ASME 20, 105–112Google Scholar
  6. Kostyuk, A.G. 1953: Analysis of profile of rotating disk in creep conditions (in Russian).Prikl. Mat. Mekh. 17, 615–618Google Scholar
  7. Prager, W. 1968: Optimal structural design for given stiffness in stationary creep.Z. Angew. Math. Phys. 2, 252–256Google Scholar
  8. Rysz, M. 1987: Optimal design of a thick-walled pipeline crosssection against creep rupture.Acta Mechanica 1/4, 83–102Google Scholar
  9. Szuwalski, K. 1989: Optimal design of bars under nonuniform tension with respect to ductile creep rupture.Mech. Struct. Mach. 3, 303–319Google Scholar
  10. Szuwalski, K. 1991: Bars of uniform strength vs. optimal with respect to ductile creep rupture time.Proc. IUTAM Symp. on Creep in Structures (held in Cracow), pp. 637–643. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  11. Świsterski, W.; Wróblewski, A.; Życzkowski, M. 1983: Geometrically non-linear eccentrically compressed columns of uniform strength vs. optimal columns.Int. J. Nonlinear Mech. 18, 287–296Google Scholar
  12. Życzkowski, M. 1971: Optimal structural design in rheology.J. Appl. Mech. 1, 39–46Google Scholar
  13. Życzkowski, M. 1988: Optimal structural design under creep conditions.Appl. Mech. Rev. 12, 453–461Google Scholar
  14. Życzkowski, M.; Rysz, M. 1986: Optimization of cylindrical shells under combined loading against brittle creep rupture.Proc. IUTAM Symp. on Inelastic Behaviour of Plates and Shells (held in Rio de Janeiro), pp. 385–401. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  15. Życzkowski, M.; Świsterski, W. 1980: Optimal structural design of flexible beams with respect to creep rupture time.Proc. IUTAM Symp. on Structural Control (held in Waterloo), pp. 795–810. Amsterdam: North-HollandGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • K. Szuwalski
    • 1
  1. 1.Institute of Mechanics and Machine DesignCracow University of TechnologyCracowPoland

Personalised recommendations