Journal of Molecular Evolution

, Volume 7, Issue 4, pp 325–329 | Cite as

5-methylcytosine content in the vertebrate deoxyribonucleic acids: Species specificity

  • R. M. Kothari
  • V. Shankar
Letter to the Editor

Summary

RNA-free native DNA samples, isolated by four methods, from different vertebrate tissues and species, were hydrolyzed chemically and enzymatically and analyzed by paper chromatography to estimate the base composition. It was noted that (i) all the DNA preparations analyzed contained 5-methylcytosine, (ii) on the basis of mole percent of 5-methylcytosine, the composition of DNA varied in different species, but not so much in different tissues of the same species, (iii) the method of DNA hydrolysis, but not the method of deproteinization, affected the mole percent of 5-methylcytosine, and (iv) no 5-hydroxymethylcytosine (5-HMC) was detected in any of the DNA preparations analyzed.

Key words

Vertebrate Tissue DNA Base Analysis Paper Chromatography 5-Methylcytosine Content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Arif, A., Sporn, M.B. (1972). Anal.Biochem. 48, 386–393Google Scholar
  2. Borek, E., Srinivasan, P.R. (1966). Ann.Rev.Biochem. 35, 275–298Google Scholar
  3. Brooks, P., Lawley, P.D. (1971). Chemical mutagens: Principles and methods of their detection, Vol. I, A. Hollaender, ed., p. 121–144. New York: Plenum PressGoogle Scholar
  4. Chargaff, E., Zamenhof, S., Green, S. (1950). Nature 165, 756–757Google Scholar
  5. Cheng, T.Y., Sueoka, N. (1963). Science 141, 1194–1196Google Scholar
  6. Drahovsky, D., Morris, N.R. (1971). J.Mol.Biol. 57, 475–489Google Scholar
  7. Kalousek, F., Morris, N.R. (1969). J.Biol.Chem. 244, 1157–1163Google Scholar
  8. Kothari, R.M. (1970). J.Chromatog. 52, 119–129Google Scholar
  9. Kothari, R.M. (1971). J.Chromatog. 54, 239–244Google Scholar
  10. Kothari, R.M. (1972). J.Chromatog. 64, 85–94Google Scholar
  11. Kriek, E. (1972). Cancer Res. 32, 2042–2048Google Scholar
  12. McFarlane, E.S. (1972). Biochem.J. 129, 513–517Google Scholar
  13. Meselson, M., Yuan, R., Heywood, J. (1972). Ann.Rev.Biochem. 41, 447–466Google Scholar
  14. Munns, T.W., Podratz, K.C., Katzmann, P.A. (1973). J.Chromatog. 76, 401–406Google Scholar
  15. Penn, N.W., Suwalski, R., O'Riley, C., Bojanowski, K., Yura, R. (1972). Biochem.J. 126, 781–790Google Scholar
  16. Rae, P.M.M. (1973). Proc.Natl.Acad.Sci.USA 70, 1141–1145Google Scholar
  17. Salomon, R., Kaye, A.M. (1970). Biochim.Biophys.Acta 204, 340–351Google Scholar
  18. Scarano, E., Iaccarino, M., Grippo, P., Parisi, E. (1967). Proc.Natl.Acad.Sci.USA 57, 1394–1400Google Scholar
  19. Sheid, B., Srinivasan, P.R., Borek, E. (1968). Biochemistry, 7, 280–285Google Scholar
  20. Srinivasan, P.R., Borek, E. (1964). Science 145, 548–553Google Scholar
  21. Srinivasan, P.R., Borek, E. (1966). Progr.Nucleic Acid Res.Mol.Biol. 5, 157–189Google Scholar
  22. Vanyushin, B.F., Mazin, A.L., Vasilyev, V.K., Belozersky, A.N. (1973). Biochim.Biophys.Acta 299, 397–403Google Scholar
  23. Wyatt, G.R. (1951a). Biochem.J. 48, 581–583Google Scholar
  24. Wyatt, G.R. (1951b). Biochem.J. 48, 584–590Google Scholar
  25. Wyatt, G.R., Cohen, S.S. (1953). Biochem.J. 55, 774–782Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • R. M. Kothari
    • 1
  • V. Shankar
    • 1
  1. 1.Department of Zoology and Department of ChemistryUniversity of PoonaPoona-7India

Personalised recommendations