Structural optimization

, Volume 10, Issue 2, pp 71–78 | Cite as

Generalized topology design of structures with a buckling load criterion

  • M. M. Neves
  • H. Rodrigues
  • J. M. Guedes
Technical Papers

Abstract

Material based models for topology optimization of linear elastic solids with a low volume constraint generate very slender structures composed mainly of bars and beam elements. For this type of structure the value of the buckling critical load becomes one of the most important design criteria and so its control is very important for meaningful practical designs. This paper tries to address this problem, presenting an approach to introduce the possibility of critical load control into the topology optimization model.

Using the material based formulation for topology design of structures, the problem of optimal structural reinforcement for a critical load criterion is formulated. The stability problem is conveniently reduced to a linearized eigenvalue problem assuming only material effective properties and macroscopic instability modes. The respective optimality criteria are presented by introducing the Lagrangian associated with the optimization problem. Based on this Lagrangian a first-order method is used as a basis for the numerical update scheme. Two numerical examples to validate the developments are presented and analysed.

Keywords

Topology Optimization Critical Load Beam Element Instability Mode Effective Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendsøe, M.P.; Díaz, A.; Kikuchi, N. 1993: Topology and generalized layout optimization of elastic structures. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 159–206. Dordrecht: KluwerGoogle Scholar
  2. Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method.Comp. Meth. Appl. Mech. Eng. 71, 197–224Google Scholar
  3. Bendsøe, M.P.; Mota Soares, C.A. (eds.) 1993:Topology design of structures. Dordrecht: KluwerGoogle Scholar
  4. Clarke, F.H. 1983:Optimization and non-smooth analysis. New York: John Wiley & SonsGoogle Scholar
  5. Demyanov, V.F.; Malozemov, V.N. 1990:Introduction to minimax. New York: Dover Publications Inc.Google Scholar
  6. Díaz, A.; Kikuchi, N. 1993: Solutions to shape and topology eigenvalue optimization problems using a homogenization method.Int. J. Num. Meth. Engrg. 35, 1487–1502Google Scholar
  7. Guedes, J.M.; Kikuchi, N. 1990: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite elements methods.Comp. Meth. Appl. Mech. Engrg. 83, 143–198Google Scholar
  8. Kiwiel, K.C. 1985: Methods of descent for nondifferentiable optimization.Lecture Notes in Mathematics 1133. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  9. Mlejnek, H.P. 1993: Some explorations in the genesis of structures. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 287–300. Dordrecht: KluwerGoogle Scholar
  10. Mróz, Z.; Haftka, R.T. 1993: Design sensitivity analysis of nonlinear structures in regular and critical states. In: Haslinger, J. (ed.)Mathematical methods in computer aided optimal design. Prague: Faculty of Mathematics and Physics, Charles UniversityGoogle Scholar
  11. Neves, M.M. 1994:Topology optimization of structures with stability constraints. M.Sc. Thesis, Mechanical Engineering Dept. Instituto Superior Técnico, Lisbon, PortugalGoogle Scholar
  12. Novozhilov, V.V. 1953:Foundations on the non-linear theory of elasticity. Rochester, New York: Graylock PressGoogle Scholar
  13. Rodrigues, H.; Guedes, J.M.; Bendsøe, M.P. 1995: Necessary conditions for optimal design of structures with a non-smooth eigenvalue based criterion.Struct. Optim. 9, 52–56Google Scholar
  14. Rozvany, G.; Zhou, M.; Birker, T.; Sigmund, O. 1993: Topology optimization using iterative continuum type optimality criteria (COC) methods for discretized systems. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 273–286. Dordrecht: KluwerGoogle Scholar
  15. Seyranian, A.P.; Lund, E.; Olhoff, N. 1994: Multiple eigenvalues in structural optimization problems.Struct. Optim. 8, 207–227Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • M. M. Neves
    • 1
  • H. Rodrigues
    • 1
  • J. M. Guedes
    • 1
  1. 1.Mechanical Engineering DepartmentIDMEC-Instituto Superior TécnicoLisboa CodexPortugal

Personalised recommendations