Molecular and Cellular Biochemistry

, Volume 17, Issue 2, pp 89–99 | Cite as

Polyamines, ribonucleases, and the stability of RNA

  • T. P. Karpetsky
  • P. A. Hieter
  • J. J. Frank
  • C. C. Levy
Review Articles

Summary

The polyamines influence the activity of many enzymes involved in the synthesis and degradation of RNA. These organic cations (putrescine, spermidine, spermine) stimulate, for example, many DNA-dependent RNA polymerases and affect both RNA chain elongation and initiation. The polyamines also bind to polynucleotides, forming complexes having, in many cases, physical properties quite distinct from the parent polymer. Some of these complexes are resistent to ribonuclease mediated hydrolysis. However, polyamines alter the activity, as well as the specificity of some RNases, so the actual rate of breakdown of RNA is dependent on the interaction of polyamine with both RNA and enzyme. The hydrolytic rate may also be controlled by the presence of purine homopolymer, which acts to strongly inhibit RNase activity. The addition of polyadenylic acid tracts to the 3′ terminus of the RNA substrate, for example, protects the unpolyadenylated portion of the RNA molecule from degradation. Longer segments of poly(A) are more effective in this respect; however, regardless of poly(A) length, low concentrations of spermidine reverse the inhibition of RNase activity, with concomitant rapid degradation of the unpolyadenylated portion of the RNA molecule. Thus, RNA degradation depends not only on the presence of RNase, but on poly(A) length and spermidine concentration as well. Although the relative importance, within the cell, of each of these interactions is not known, the above mechanisms illustrate certain of the complexities and interrelations that may exist for the synthesis and, in particular, the RNase mediated degradation of RNA.

Keywords

Spermine Putrescine Spermidine Organic Cation Polynucleotide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herbst, E. J. and Doctor, B. P., 1959. J. Biol. Chem. 234, 1497–1500.Google Scholar
  2. 2.
    Mitra, S. and Kaesberg, P., 1963. Biochem. Biophys. Res. Commun. 11, 146–151.Google Scholar
  3. 3.
    Amos, H. and Kearns, K. E., 1963. Expl. Cell Res. 32, 14–25.Google Scholar
  4. 4.
    Kedracki, R. and Szer, W., 1967. Acta Biochim. Pol. 14, 163–168.Google Scholar
  5. 5.
    Goldstein, J., 1966. Biochim. Biophys. Acta 123, 620–623.Google Scholar
  6. 6.
    Sprecher-Goldberger, S., 1967. Arch. Ges. Virusforsch. 20, 225–234.Google Scholar
  7. 7.
    Janik, B., Kotick, M. P., Kreiser, T. H., Reverman, L. F., Sommer, R. G. and Wilson, D. P., 1972. Biochem. Biophys. Res. Commun. 46, 1153–1160.Google Scholar
  8. 8.
    Szer, W., 1970. Ann. N.Y. Acad. Sci. 171, 801–809.Google Scholar
  9. 9.
    Thierr, J. C., Deubel, V. and Leng, M., 1972. Biochemie 54, 1115–1119.Google Scholar
  10. 10.
    Glasser, R. and Gabbay, E. J., 1968. Biopolymers 6, 243–254.Google Scholar
  11. 11.
    Matsuo. K. and Tsuboi, M., 1966. Bull. Chem. Soc. Japan 39, 347–352.Google Scholar
  12. 12.
    Higuchi, S. and Tsuboi, M., 1966. Bull. Chem. Soc. Japan 39, 1886–1893.Google Scholar
  13. 13.
    Sakai, T. T. and Cohen, S. S., 1976. Prog. Nucl. Acid Res. and Mol. Biol. 17, 15–41.Google Scholar
  14. 14.
    Sakai, T. T., Torget, R., I, J., Freda, C. E., and Cohen, S. S., 1975. Nucl. Acids Res. 2, 1005–1022.Google Scholar
  15. 15.
    Gabbay, E. J. and Shimshak, R. R., 1968. Biopolymers 6, 255–268.Google Scholar
  16. 16.
    Gabbay, E. J., 1967. Biopolymers 5, 727–747.Google Scholar
  17. 17.
    Levy, C. C., Mitch, W. E. and Schmukler, M., 1973. J. Biol. Chem. 248, 5712–5719.Google Scholar
  18. 18.
    Igarashi, K., Kumagai, H., Watanabe, Y., Toyoda, N. and Hirose, S., 1975. Biochem. Biophys. Res. Commun. 67, 1070–1077.Google Scholar
  19. 19.
    Schmukler. M., Jewett, P. B. and Levy, C. C., 1975. J. Biol. Chem. 250, 2206–2212.Google Scholar
  20. 20.
    Erdmann, V. A., Thomas, G. A., Norton, J. W. and Herbst, E. J., 1968. Biochim. Biophys. Acta 157, 43–51.Google Scholar
  21. 21.
    Khawaja, J. A., 1971. Biochim. Biophys. Acta 254, 117–128.Google Scholar
  22. 22.
    Datta, R. K., Sen, S. and Ghosh, J. J., 1969. Biochem. J. 114, 847–854.Google Scholar
  23. 23.
    Weiss, R. L. and Morris, D. R., 1970. Biochim. Biophys. Acta 204, 502–511.Google Scholar
  24. 24.
    Weiss, R. L. and Morris, D. R., 1973. Biochemistry 12, 435–441.Google Scholar
  25. 25.
    Kimes, B. W. and Morris, D. R., 1973. Biochemistry 12, 442–449.Google Scholar
  26. 26.
    Changchien, L. M. and Aronson, J. N., 1970. J. Bacteriol. 103, 734–740.Google Scholar
  27. 27.
    Nakao, Y., Lee, S. Y., Halvorson, H. O. and Bock, R. M., 1968. Biochim. Biophys. Acta 151, 114–125.Google Scholar
  28. 28.
    Brewer, E. N., 1972. Expl. Cell Res. 72, 586–588.Google Scholar
  29. 29.
    Hieter, P. A., LeGendre, S. M. and Levy, C. C., 1976. J. Biol. Chem. 251, 3287–3293.Google Scholar
  30. 30.
    Frank, J. J., Hawk, I. A. and Levy, C. C., 1976. Biochim. Biophys. Acta 432, 369–380.Google Scholar
  31. 31.
    von Hippel, P. H. and McGhee, J. D., 1972. Ann. Rev. Biochem. 41, 247–251.Google Scholar
  32. 32.
    Horacek, P. and Cernohorsky, I. J., 1968. Biochem. Biophys. Res. Commun. 32, 956–962.Google Scholar
  33. 33.
    Czurylo, E., Kielanowska, M. and Shugar, D., 1974. Acta Biochim. Pol. 21, 93–100.Google Scholar
  34. 34.
    Eisinger, J., Fawaz-Estrup, F. and Shulman, R. G., 1965. J. Chem. Phys. 42, 43–53.Google Scholar
  35. 35.
    Hirschman, S. Z., Leng, M. and Felsenfeld, G., 1967. Biopolymers 5, 227–233.Google Scholar
  36. 36.
    Tabor, H., 1961. Biochem. Biophys. Res. Commun. 4, 228–231.Google Scholar
  37. 37.
    Tabor, H., 1962. Biochemistry 1, 496–500.Google Scholar
  38. 38.
    Kaiser, D., Tabor, H. and Tabor, C. W., 1963. J. Mol. Biol. 6, 141–147.Google Scholar
  39. 39.
    Mahler, H. R., Mehrotra, B. D. and Sharp, C. W., 1961. Biochem. Biophys. Res. Commun. 4, 79–82.Google Scholar
  40. 40.
    Stevens, L. and Pascoe, G., 1972. Biochem. J. 128, 279–289.Google Scholar
  41. 41.
    Turnock, G. and Birch, B., 1973. Eur. J. Biochem. 33, 467–474.Google Scholar
  42. 42.
    Gfeller, E. and Russell, D. H., 1971. Z. Zellforsch. Mikrosk. Anat. 120, 321–331.Google Scholar
  43. 43.
    Erdmann, G. and Fischer, H. A., 1973. Histochemie 36, 335–345.Google Scholar
  44. 44.
    Levy, C. C., Hieter, P. A. and LeGendre, S. M., 1974. J. Biol. Chem. 249, 6762–6769.Google Scholar
  45. 45.
    Frank, J. J., Hawk, I. A. and Levy, C. C., 1975. Biochim. Biophys. Acta 390, 117–124.Google Scholar
  46. 46.
    Levy, C. C., Mitch, W. E. and Schmukler, M., 1973.in Polyamines in Normal and Neoplastic Growth (Russell, D. H., editor), pp. 91–101, Raven Press, New York.Google Scholar
  47. 47.
    Yanagawa, H., Ogawa, Y. and Egami, F., 1976. Z. Allg. Mikrobiol. 16, 627–632.Google Scholar
  48. 48.
    Nakano, T. and Tsuboi, M., 1976. J. Biochem. 80, 1435–1438.Google Scholar
  49. 49.
    Karpetsky, T. P., Hieter, P. A. and Levy. C. C., 1976.in Proceedings of Second Conference on Modulation of Host Resistance in the Prevention or Treatment of Induced Neoplasias (Chirigos, M. A., editor), pp. 517–529, Raven Press, New York.Google Scholar
  50. 50.
    Levy, C. C., 1975. Life Sciences 17, 311–316.Google Scholar
  51. 51.
    Levy, C. C., Schmukler, M., Frank, J. J., Karpetsky, T. P., Jewett, P. B., Hieter, P. A., LeGendre, S. M. and Dorr, R. G., 1975. Nature 256, 340–341.Google Scholar
  52. 52.
    Sulkowski, E. and Laskowski, M., 1968. J. Biol. Chem. 243, 651–655.Google Scholar
  53. 53.
    Schmukler, M., Friedling, S. P. and Levy, C. C., 1972. Biochim. Biophys. Acta 268, 403–410.Google Scholar
  54. 54.
    Friedling, S. P., Schmukler, M. and Levy, C. C., 1972. Biochim. Biophys. Acta 268, 391–402.Google Scholar
  55. 55.
    Frank, J. J. and Levy, C. C., 1976. J. Biol. Chem. 251, 5745–5751.Google Scholar
  56. 56.
    Neuwelt, E. A., Frank, J. J. and Levy, C. C., 1976. J. Biol. Chem. 251, 5752–5758.Google Scholar
  57. 57.
    Lim, L. and Canellakis, E. S., 1970. Nature 227, 710–712.Google Scholar
  58. 58.
    Kates, J., 1970. Cold Spring Hbr. Sym. Quant. Biol. 35, 743–752.Google Scholar
  59. 59.
    Brawerman, G., 1976. Prog. Nucl. Acid Res. and Mol. Biol. 17, 117–148.Google Scholar
  60. 60.
    Lee, S. Y., Mendecki, J. and Brawerman, G., 1971. Proc. Natl. Acad. Sci. U.S. 68, 1331–1335.Google Scholar
  61. 61.
    Darnell, J. E., Wall, R. and Tushinski, R. J., 1971. Proc. Natl. Acad. Sci. U.S. 68, 1321–1325.Google Scholar
  62. 62.
    Mendecki, J., Lee, S. Y. and Brawerman, G., 1972. Biochemistry 11, 792–798.Google Scholar
  63. 63.
    Fresco, J. R. and Doty, P., 1957. J. Amer. Chem. Soc. 79, 3928–3929.Google Scholar
  64. 64.
    Jeffrey, W. R. and Brawerman, G., 1974. Biochemistry 13, 4633–4637.Google Scholar
  65. 65.
    Molloy, G. R., Sporn, M. B., Kelley, D. E. and Perry, R. P., 1972. Biochemistry 11, 3256–3260.Google Scholar
  66. 66.
    Sheldon, R., Kates, J., Kelley, D. E. and Perry, R. P., 1972. Biochemistry 11, 3829–3834.Google Scholar
  67. 67.
    Brawerman, G. and Diez, J., 1975. Cell 5, 271–280.Google Scholar
  68. 68.
    Weinberg, R. A., 1973. Ann. Rev. Biochem. 42, 329–354.Google Scholar
  69. 69.
    Lewin, B., 1975. Cell 4, 11–20.Google Scholar
  70. 70.
    Lewin, B., 1975. Cell 4, 77–93.Google Scholar
  71. 71.
    Brawerman, G., 1974. Ann. Rev. Biochem. 43, 621–642.Google Scholar
  72. 72.
    Greenberg, J. R., 1975. J. Cell Biol. 64, 269–288.Google Scholar
  73. 73.
    Soreq, H., Nudel, V., Salomon, R., Revel, M. and Littauer, U. Z., 1974. J. Mol. Biol. 88, 233–245.Google Scholar
  74. 74.
    Blobel, G., 1973. Proc. Natl. Acad. Sci. U.S. 70, 924–928.Google Scholar
  75. 75.
    Kwan, S. and Brawerman, G., 1972. Proc. Natl. Acad. Sci. U.S. 69, 3247–3250.Google Scholar
  76. 76.
    Marbaix, G., Huez, G., Burny, A., Cleuter, Y., Hubert, E., Leclercq, M., Chantrenne, H., Soreq, H., Nudel, V. and Littauer, U. Z., 1975. Proc. Natl. Acad. Sci. U.S. 72, 3065–3067.Google Scholar
  77. 77.
    Ohta, M., Saunders, M. and Newton, A., 1975. Proc. Natl. Acad. Sci. U.S. 72, 2343–2346.Google Scholar
  78. 78.
    Nakazato, M., Venkatesan, S. and Edmonds, M., 1975. Nature 256, 144–146.Google Scholar
  79. 79.
    Diez, J. and Brawerman, G., 1974. Proc. Natl. Acad. Sci. U.S. 71, 4091–4095.Google Scholar
  80. 80.
    Perry, R. P., Kelley, D. E. and LaTorre, J., 1974. J. Mol. Biol. 82, 315–331.Google Scholar
  81. 81.
    Spector, D. H. and Baltimore, D., 1974. Proc. Natl. Acad. Sci. U.S. 71, 2983–2987.Google Scholar
  82. 82.
    Huez, G., Marbaix, G., Hubert, E., Leclercq, M., Nudel. V., Soreq, H., Solomon, R., Lebleu, B., Revel, M. and Littauer, U. Z., 1974. Proc. Natl. Acad. Sci. U.S. 71, 3143–3146.Google Scholar
  83. 83.
    Huez, G., Marbaix, G., Hubert, E., Cleuter, Y., Leclercq, M., Chantrenne, H., Devos, R., Soreq, H., Nudel, V. and Littauer, U. Z., 1975. Eur. J. Biochem. 59, 589–592.Google Scholar
  84. 84.
    Wilt, F. H., 1973. Proc. Natl. Acad. Sci. U.S. 70, 2345–2349.Google Scholar
  85. 85.
    Sheiness, D., Puckett, L. and Darnell, J. E., 1975. Proc. Natl. Acad. Sci. U.S. 72, 1077–1081.Google Scholar
  86. 86.
    Levy, C. C. and Goldman, P., 1970. J. Biol. Chem. 245, 3257–3262.Google Scholar
  87. 87.
    Sheiness, D. and Darnell, J. E., 1973. Nature 241, 265–268.Google Scholar
  88. 88.
    Adesnik, M. and Darnell, J. E., 1972. J. Mol. Biol. 67, 397–406.Google Scholar
  89. 89.
    Greenberg, J. R. and Perry, R. P., 1972. J. Mol. Biol. 72, 91–98.Google Scholar
  90. 90.
    Croft, L. R., 1973. Handbook of Protein Sequences, pp. 118–120, Joynson-Bruvvers, Ltd., Oxford, England.Google Scholar
  91. 91.
    Lazarus, H. and Sporn, M., 1967. Proc. Natl. Acad. Sci. U.S. 57, 1386–1393.Google Scholar
  92. 92.
    Levy, C. C., 1971. Biochim. Biophys. Acta 246, 464–475.Google Scholar
  93. 93.
    Cohen, B. B., 1976. Cancer Biochem. Biophys. 1, 251–256.Google Scholar
  94. 94.
    Claycomb, W. C. and Villee, C. A., 1971. Expl. Cell Res. 69, 430–434.Google Scholar
  95. 95.
    Raina, A. and Cohen, S. S., 1966. Proc. Natl. Acad. Sci. U.S. 55, 1587–1593.Google Scholar
  96. 96.
    Raina, A., Jansen, M. and Cohen, S. S., 1967. J. Bacteriol. 94, 1684–1696.Google Scholar
  97. 97.
    Fuchs, E., Millette, R. L., Zillig, W. and Walter, G. 1967. Eur. J. Biochem. 3, 183–193.Google Scholar
  98. 98.
    Doerfler, W., Zillig, W., Fuchs, E. and Albers, M., 1962. Hoppe-Seyler's Z. Physiol. Chem. 330, 96–123.Google Scholar
  99. 99.
    Krakow, J. S., 1963. Biochim. Biophys. Acta 72, 566–571.Google Scholar
  100. 100.
    Fox, C. F. and Weiss, S. B., 1964. J. Biol. Chem. 239, 175–185.Google Scholar
  101. 101.
    Stirpe, F. and Novello, F., 1970. Eur. J. Biochem. 15, 505–512.Google Scholar
  102. 102.
    Moruzzi, G., Barbiroli, B., Moruzzi, M. S. and Tadolini, B., 1975. Biochem. J. 146, 697–703.Google Scholar
  103. 103.
    Mandel, J. L. and Chambon, P., 1974. Eur. J. Biochem. 41, 367–378.Google Scholar
  104. 104.
    Lazarus, L. H. and Itin, A., 1973. Arch. Biochem. Biophys. 156, 154–160.Google Scholar
  105. 105.
    Singh, V. K. and Sung, S. C., 1972. J. Neurochem. 19, 2885–2888.Google Scholar
  106. 106.
    Tani, T., McFadden, B. A., Homann, H. R. and Shishiyama, J., 1968. Biochim. Biophys. Acta 161, 309–324.Google Scholar
  107. 107.
    Millette, R. L., 1969. Fedn. Proc. Fedn. Am. Socs. Exp. Biol. 28, 659.Google Scholar
  108. 108.
    Lee-Huang, S. and Warner, R. C., 1969. J. Biol. Chem. 244, 3793–3802.Google Scholar
  109. 109.
    So. A. G., Davie, E. W., Epstein, R. and Tissieres, A., 1967. Proc. Natl. Acad. Sci. U.S. 58, 1739–1746.Google Scholar
  110. 110.
    Maitra, U. and Barash, F., 1969. Fedn. Proc. Fedn. Am. Socs. Exp. Biol. 28, 659.Google Scholar
  111. 111.
    Boyle, S. M. and Cohen, P. S., 1968. J. Bacteriol. 96, 1266–1272.Google Scholar
  112. 112.
    Simon, E. J., Cohen, S. S. and Raina, A., 1966. Biochem. Biophys. Res. Commun. 24, 482–488.Google Scholar
  113. 113.
    Cohen, S. S., 1971. Introduction to the Polyamines, pp. 96–97, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  114. 114.
    Cohen, S. S., Hoffner, N., Jansen, M., Moore, M. and Raina, A., 1967. Proc. Natl. Acad. Sci. U.S. 57, 721–728.Google Scholar
  115. 115.
    Stent, G. S. and Brenner, S., 1961. Proc. Natl. Acad. Sci. U.S. 47, 2005–2014.Google Scholar
  116. 116.
    McCann, P. P., Tardif, C., Mamont, P. S. and Schuber, F., 1975. Biochem. Biophys. Res. Commun. 64, 336–341.Google Scholar
  117. 117.
    Friedman, S. J., Halpern, K. V. and Canellakis, E. S., 1972. Biochim. Biophys. Acta 261, 181–187.Google Scholar
  118. 118.
    Fukuma, I. and Cohen, S. S., 1975. J. Virol. 15, 1176–1181.Google Scholar
  119. 119.
    Kay, J. E. and Lindsay, V. J., 1973. Expl. Cell Res. 77, 428–436.Google Scholar
  120. 120.
    Howard, D. K., Hay, J., Melvin, W. T. and Durham, J. P., 1974. Expl. Cell Res. 86, 31–42.Google Scholar
  121. 121.
    Russell, D. H., 1970. Ann. N.Y. Acad. Sci. 171, 772–782.Google Scholar
  122. 122.
    Russell, D. H. and Lombardini, J. B., 1971. Biochim. Biophys. Acta 240, 273–286.Google Scholar
  123. 123.
    Fillingame, R. H. and Morris, D. R., 1973. Biochemistry 12, 4479–4487.Google Scholar
  124. 124.
    Kay, J. E. and Pegg, A. E., 1973. FEBS Lett. 29, 301–304.Google Scholar
  125. 125.
    Harik, S. I., Hollenberg, M. D. and Snyder, S. H., 1974. Nature 249, 250–251.Google Scholar
  126. 126.
    Young, D. V. and Srinivasan, P. R., 1972. J. Bacteriol. 112, 30–39.Google Scholar
  127. 127.
    Tabor, H. and Tabor, C. W., 1976. Ann. Rev. Biochem. 45, 285–306.Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1977

Authors and Affiliations

  • T. P. Karpetsky
    • 1
  • P. A. Hieter
    • 1
  • J. J. Frank
    • 1
  • C. C. Levy
    • 1
  1. 1.Enzymology and Drug Metabolism Section, Laboratory of Molecular BiologyBaltimore Cancer Research Center, National Cancer Institute, NIHBaltimoreUSA

Personalised recommendations