Infection

, Volume 24, Issue 4, pp 275–291 | Cite as

Immunomodulating effects of antibiotics: Literature review

  • B. Van Vlem
  • R. Vanholder
  • P. De Paepe
  • S. Ringoir
  • D. Vogelaers
Review

Summary

Antibiotics can interact directly with the immune system. This is a review of the immunomodulating effects of antibiotics. The Medline database on CD-ROM was searched for the years 1987 to 1994 using the following search string: “thesaurus explode antibiotics / all AND (thesaurus explode immune-system / drug effects ORthesaurus immune-tolerance / drug effects).” Aspects of the immune system studied were aspects of phagocyte functions: phagocytosis and killing, and chemotaxis and aspects of lymphocyte functions: lymphocyte proliferation, cytokine production, antibody production, delayed hypersensitivity and natural killer-cell activity. In order to quantify and to compare immunomodulatory properties of antibiotics we calculated an “immune index,” defined as: number of positive statements — number of negative statements/total number of statements. Concerning phagocytosis, positive effects were observed for cefodizime, imipenem, cefoxitin, amphotericin B and clindamycin and negative effects for erythromycin, roxithromycin, cefotaxime, tetracycline, amplicillin and gentamicin. Clindamycin, cefoxitin and imipenem induce enhancement of chemotaxis, whereas cefotaxime, rifampicin and teicoplanin decrease chemotaxis. Regarding lymphocyte proliferation, cefodizime has the strongest stimulating effect, whereas tetracycline has the strongest negative effect. Except for erythromycin and amphotericin B the number of statements reported is too small to be conclusive for the interpretation of effects on cytokine production. Erythromycin and amphotericin B appear to stimulate cytokine production. As to antibody production, cefodizime has the strongest positive effect, whereas josamycin, rifampicin and tetracycline have marked negative effects. For delayed hypersensitivity and the natural killer-cell activity the number of statements is too small for any single antibiotic to be conclusive. There are three markedly immuno-enhancing antibiotics (imipenem, cefodizime and clindamycin) and eight markedly immuno-depressing antibiotics (erythromycin, roxithromycin, cefotaxime, tetracycline, rifampicin, gentamicin, teicoplanin and ampicillin).

Immunmodulierende Wirkungen von Antibiotika

Zusammenfassung

Antibiotika können direkt mit dem Immunsystem in Wechselwirkung treten. Im Folgenden geben wir eine Übersicht über immunmodulierende Wirkungen von Antibiotika. Medline Datenbasen auf CD-ROM für die Jahre 1987–1994 mit den Stichworten “thesaurus explode antibiotics / all AND (thesaurus explode immune-system/ drug effects ORthesaurus immune-tolerance / drug effects)” wurden befragt. Die immunologischen Studien betrafen Aspekte der Phagozytenfunktionen: Phagozytose und Abtötung sowie Chemotaxis und Aspekte der Lymphozytenfunktion, Lymphozytenproliferation, Zytokinproduktion, Antikörperbildung, Überempfind-lichkeitsreaktion vom verzögerten Typ und natürliche Killerzellaktivität. Um immunmodulierende Eigenschaften von Antibiotika quantifizierbar und vergleichbar zu machen, wurde ein wie folgt definierter “Immunindex” berechnet: Zahl positive Aussagen — Zahl negativer Aussagen/Gesamtaussagen. Positive Wirkungen auf die Phagozyten wurden mit Cefodizim, Imipenem, Cefoxitin, Amphotericin B und Clindamycin gemacht. Bei Erythromycin, Roxithromycin, Cefotaxim, Tetracyklin, Ampicillin und Gentamicin wurden negative Effekte beobachtet. Clindamycin, Cefoxitin und Imipenem induzieren eine Verstärkung der Chemotaxis. Auf die Lymphozyten-proliferation hat Cefodizim den stärksten Stimulationseffekt, Tetrazyklin hat den stärksten negativen Effekt. Die Wirkung auf Zytokinproduktion kann nur für Erythromycin und Amphotericin B beurteilt werden, bei allen anderen Substanzen reichen die Daten hierfür nicht aus. Erythromycin und Amphotericin B führen offensichtlich zu einer Stimulation der Zytokinproduktion. Auf die Antikörperbildung hat Cefodizim die stärkste positive Wirkung, deutlich negative Effekte wurden mit Josamycin, Rifampicin und Tetrazyklin beobachtet. Für die verschiedenen Antibiotika liegen nicht genügend Studien zur Überempfindlichkeitsreaktion vom verzögerten Typ oder zur Natural Killer Cell Aktivität vor. Drei der Antibiotika haben ausgeprägte fördernde Wirkung auf das Immunsystem (Imipenem, Cefodizim, Clindamycin), acht haben ausgeprägt immunsuppressive Wirkung (Erythromycin, Roxithromycin, Cefotaxim, Tetrazyklin, Rifampicin, Gentamicin, Teicoplanin und Ampicillin).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hauser, W. E., Remington, J. S. Effect of antibiotics on the immune response. Am. J. Med. 72 (1982) 711–716.Google Scholar
  2. 2.
    Korzeniowski, O. M. Effects of antibiotics on the mammalian immune system. Infect. Dis. Clin. North. Am. 3 (1989) 469–478.Google Scholar
  3. 3.
    van den Broek, J. Antimicrobial drugs, microorganisms, and phagocytes. Rev. Infect. Dis. 11 (1989) 213–245.Google Scholar
  4. 4.
    Gemmell, C. G. Antibiotics and neutrophil function — potential immunomodulating activities. J. Antimicrob. Chemother. 31 (Suppl. B) (1993) 23–33.Google Scholar
  5. 5.
    Labro, M. T., el-Benna, J. Effects of anti-infectious agents on polymorphonuclear neutrophils. Eur. J. Clin. Microbiol. Infect. Dis. 10 (1991) 124–131.Google Scholar
  6. 6.
    Milatovic, D. Antibiotics and phagocytosis. Eur. J. Clin. Microbiol. 2 (1983) 414–425.Google Scholar
  7. 7.
    Ringoir, S. The “infection equation.” Infection 20 (Suppl. 1) (1992) S75-S77.Google Scholar
  8. 8.
    Carevic, O., Djokic, S. Comparative studies on the effects of erythromycin A and azithromycin upon extracellular release of lysosomal enzymes in inflammatory processes. Agents Actions 25 (1988) 124–131.Google Scholar
  9. 9.
    Corrales, I., Aguilar, L., Mato, R., Frias, J., Prieto, J. Immunomodulatory effect of cefminox. [Letter] J. Antimicrob. Chemother. 33 (1994) 372–374.Google Scholar
  10. 10.
    Sheng, F. C., Freischlag, J., Bacstrom, B., Kelly, D., Busuttil, R. W. The effects ofin vivo antibiotics on neutrophil (PMN) activity in rabbits with peritonitis. J. Surg. Res. 43 (1987) 239–245.Google Scholar
  11. 11.
    Paape, M. J., Nickerson, S. C., Ziv, G. In vivo effects of chloramphenicol, tetracycline, and gentamicin on bovine neutrophil function and morphologic features. Am. J. Vet. Res. 51 (1990) 1055–1061.Google Scholar
  12. 12.
    Chang, F. Y., Shaio, M. F. In vitro effect of actinomycin D on human neutrophil function. Microbiol. Immunol. 34 (1990) 311–321.Google Scholar
  13. 13.
    Paape, M. J., Miller, R. H., Ziv, G. Pharmacologic enhancement or suppression of phagocytosis by bovine neutrophils. Am. J. Vet. Res. 52 (1991) 363–366.Google Scholar
  14. 14.
    Fromtling, R., Abruzzo, A., G. K., Turnbull, T. A., Giltinan, D. M., Capizzi, T. P. Use of chemiluminescence to evaluate the influence of antifungal agents on immune cell function. Ann. N. Y. Acad. Sci. 544 (1988) 270–283.Google Scholar
  15. 15.
    Gunther, M. R., Mao, J., Cohen, M. S. Oxidant-scavenging activities of ampicillin and sulbactam and their effects on neutrophil functions. Antimicrob. Agents Chemother. 37 (1993) 950–956.Google Scholar
  16. 16.
    Ottonello, L., Dallegri, F., Dapino, P., Pastorino, G., Sacchetti, C. Cytoprotection against neutrophil-delivered oxidant attack by antibiotics. Biochem. Pharmacol. 42 (1991) 2317–2321.Google Scholar
  17. 17.
    Briheim, G., Dahlgren, C. Influence of antibiotics on formylmethionyl-leucyl-phenylalanine-induced leukocyte chemiluminescence. Antimicrob. Agents Chemother. 31 (1987) 763–767.Google Scholar
  18. 18.
    Lintner, T. J., Eberhart, R. J. Effects of bovine mammary secretion during the early nonlactating period and antibiotics on polymorphonuclear neutrophil function and morphology. Am. J. Vet. Res. 51 (1990) 524–532.Google Scholar
  19. 19.
    Abruzzo, G. K., Fromtling, R. A., Turnbull, T. A., Giltinan, D. M. Effects of bifonazole, fluconazole, itraconazole, and terbinafine on the chemiluminescence response of immune cells. J. Antimicrob. Chemother. 20 (1987) 61–68.Google Scholar
  20. 20.
    Nielsen, H. Antibiotics and human monocyte function. II. Phagocytosis and oxidative metabolism. APMIS 97 (1989) 447–451.Google Scholar
  21. 21.
    Ford, L. C., Nilsson, J. D., Hammill, H. A. Effects of cefotetan disodium, cefoxitin, cefazolin, and cefotaximein vitro on polymorphonuclear leukocytes from patients with leukopenia and severe pelvic inflammatory disease. Am. J. Obstet. Gynecol. 158 (1988) 744–745.Google Scholar
  22. 22.
    Noess, A., Hauge, B., Solberg, C. O. Effects of clindamycin and cefuroxime on leukocyte membrane receptors and function. Chemotherapy 35 (1989) 193–199.Google Scholar
  23. 23.
    Olver, S. D., Price, P., Karthigasu, K. T. Potentiation of murine cytomegalovirus pneumonitis by antibiotics in clinical use. J. Antimicrob. Chemother. 27 (1991) 81–94.Google Scholar
  24. 24.
    Paape, M. J., Miller, R. H., Ziv, G. Effects of florfenicol, chloramphenicol, and thiamphenicol on phagocytosis, chemiluminescence, and morphology of bovine polymorphonuclear neutrophil leukocytes. J. Dairy. Sci. 73 (1990) 1734–1744.Google Scholar
  25. 25.
    Hand, W. L., Hand, D. L., King-Thompson, N. L. Antibiotic inhibition of the respiratory burst response in human polymorphonuclear leukocytes. Antimicrob. Agents Chemother. 34 (1990) 863–870.Google Scholar
  26. 26.
    Van der Auwera, P., Husson, M., Fruhling, J. Influence of various antibiotics on phagocytosis ofStaphylococcus aureus by human polymorphonuclear leucocytes. J. Antimicrob. Chemother. 20 (1987) 399–404.Google Scholar
  27. 27.
    Osawa, N. Use of cycloheximide on intracellular growth ofMycobacterium leprae in cultured murine macrophages. Kitasato. Arch. Exp. Med. 64 (1991) 205–212.Google Scholar
  28. 28.
    Kenny, M. T., Torney, H. L., Balistreri, F. J. Comparative effect of the naphthalenic ansamycins rifamycin SV, rifampin and cyclopentylrifampicin on murine neutrophil function. Int. J. Immunopharmacol. 11 (1989) 915–920.Google Scholar
  29. 29.
    Miyatake, H., Suzuki, K., Taki, F., Takagi, K., Satake, T. Effect of erythromycin on bronchial hyperresponsiveness in patients with bronchial asthma. Arzneimittelforschung 41 (1991) 552–556.Google Scholar
  30. 30.
    Anderson, R. Erythromycin and roxithromycin potentiate human neutrophil locomotionin vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J. Infect. Dis. 159 (1989) 966–973.Google Scholar
  31. 31.
    Carlone, N. A., Cufini, A. M., Tullio, V., Sassella, D. Comparative effects of roxithromycin and erythromycin on cellular immune functionsin vitro. 2. Chemotaxis and phagocytosis of 3H-Staphylococcus aureus by human macrophages. Microbios 58 (1989) 17–25.Google Scholar
  32. 32.
    Bretzlaff, K. N., Neff-Davis, C. A., Ott, R. S., Koritz, G. D., Gustafsson, B. K., Davis, L.E. Florfenicol in non-lactating dairy cows: pharmacokinetics, binding to plasma proteins, and effects on phagocytosis by blood neutrophils. J. Vet. Pharmacol. Ther. 10 (1987) 233–240.Google Scholar
  33. 33.
    Ogle, J. D., Noel, J. G., Sramkoski, R. M., Ogle, C. K., Alexander, J. W. Effect of antibiotics on CR1 receptor levels of human neutrophils and on the binding and phagocytosis of opsonized polystyrene microspheres by these leucocytes. Burns 15 (1989) 141–144.Google Scholar
  34. 34.
    Gemmell, C. G. Macrolides and host defences to respiratory tract pathogens. J. Hosp. Infect. 19 (Suppl. A) (1991) 11–19.Google Scholar
  35. 35.
    Labro, M. T., el-Benna, J., Babin-Chevaye, C. Comparison of thein vitro effect of several macrolides on the oxidative burst of human neutrophils. J. Antimicrob. Chemother. 24 (1989) 561–572.Google Scholar
  36. 36.
    Van der Auwera, P., Bonnet, M., Husson, M. Influence of teicoplanin and vancomycin on degranulation by polymorphonuclear leucocytes stimulated by various agonists: anin vitro study. J. Antimicrob. Chemother. 26 (1990) 683–688.Google Scholar
  37. 37.
    Capodicasa, E., Scaringi, L., Rosati, E., De Bellis, F., Sbaraglia, G., Marconi, P., Del Favero, A. In-vitro effects of teicoplanin, teicoplanin derivative MDL 62211 and vancomycin on human polymorphonuclear cell function. J. Antimicrob. Chemother. 27 (1991) 619–626.Google Scholar
  38. 38.
    Maderazo, E. G., Breaux, S. P., Woronick, C. L., Quintiliani, R., Nightingale, C. H. High teicoplanin uptake by human neutrophils. Chemotherapy 34 (1988) 248–255.Google Scholar
  39. 39.
    Gabler, W. L., Creamer, H. R. Suppression of human neutrophil functions by tetracyclines. J. Periodontal. Res. 26 (1991) 52–58.Google Scholar
  40. 40.
    Lintner, T. J., Eberhart, R. J. Effects of antibiotics on phagocyte recruitment, function, and morphology in the bovine mammary gland during the early nonlactating period. Am. J. Vet. Res. 51 (1990) 533–542.Google Scholar
  41. 41.
    Gialdroni-Grassi, G., Bersani, C., Uccelli, M., Fietta, A. Influence of cefoperazone on neutrophil functions in volunteers. [Letter] Eur. J. Clin. Microbiol. 6 (1987) 327–328.Google Scholar
  42. 42.
    Auteri, A., Pasqui, A. L., Bruni, F., Saletti, M., Mazza, S., Di Renzo, M., Maggiore, D., Di Perri, T. Effect of cefodizime (HR 221) on immunological defects induced by surgical stress. Drugs. Exp. Clin. Res. 17 (1991) 555–561.Google Scholar
  43. 43.
    Tawfik, A. F. Effects of vancomycin, teicoplanin, daptomycin and coumermycin on normal immune capabilities. J. Chemother. 3 (1991) 226–231.Google Scholar
  44. 44.
    Preus, H., Tollefsen, T., Morland, B. Effects of tetracycline on human monocyte phagocytosis and lymphocyte proliferation. Acta. Odontol. Scand. 45 (1987) 297–302.Google Scholar
  45. 45.
    Bonnet, M., Van der Auwera, P. In vitro andin vivo intraleukocytic accumulation of azithromycin (CP-62, 993) and its influence onex vivo leukocyte chemiluminescence. Antimicrob. Agents Chemother. 36 (1992) 1302–1309.Google Scholar
  46. 46.
    Limbert, M., Mullner, H., Shah, P. M. Influence of cefodizime on the reagibility of human leukocytes. Infection 20 (Suppl. 1) (1992) S48-S50.Google Scholar
  47. 47.
    Vanholder, R., Dagrosa, E. E., Van Landschoot, N., Waterloos, M. A., Ringoir, S. M. Antibiotics and energy delivery to the phagocytosis-associated respiratory burst in chronic hemodialysis patients: a comparison of cefodizime and cotrimoxazole. Nephron. 63 (1993) 65–72.Google Scholar
  48. 48.
    Nelson, S., Summer, W. R., Terry, P. B., Warr, G. A., Jakab, G. J. Erythromycin-induced suppression of pulmonary antibacterial defenses. A potential mechanism of superinfection in the lung. Am. Rev. Respir. Dis. 136 (1987) 1207–1212.Google Scholar
  49. 49.
    Bersani, C., Bertoletti, R., Colombo, M. L., Merlini, C., Uccelli, M., Fietta, A., Gialdroni-Grassi, G. In vitro andex vivo influence of rifamycins on human phagocytes. Chemioterapia 6 (1987) 420–425.Google Scholar
  50. 50.
    Pascual, A., Martinez-Martinez, L., Aragon, J., Perea, E. J. Effect of amoxycillin and clavulanic acid, alone and in combination, on human polymorphonuclear leukocyte function againstStaphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 8 (1989) 277–281.Google Scholar
  51. 51.
    Pallister, C. J., Johnson, E. M., Warnock, D. W., Elliot, P. J., Reeves, D. F. In-vitro effects of liposome-encapsulated amphotericin B (AmBisome) and amphotericin B-deoxycholate (Fungizone) on the phagocytic and candidacidal function of human polymorphonuclear leucocytes. J. Antimicrob. Chemother. 30 (1992) 313–320.Google Scholar
  52. 52.
    Van der Auwera P., Meunier, F. In-vitro effects of cilofungin (LY 121019), amphotericin B and amphotericin B-deoxycholate on human polymorphonuclear leucocytes. J. Antimicrob. Chemother. 24 (1989) 747–763.Google Scholar
  53. 53.
    Yasui, K., Masuda, M., Matsuoka, T., Yamazaki, M., Komiyama, A., Akabane, T., Murata, K. Miconazole and amphotericin B alter polymorphonuclear leukocyte functions and membrane fluidity in similar fashions. Antimicrob. Agents Chemother. 32 (1988) 1864–1868.Google Scholar
  54. 54.
    Pascual, A., Lopez-Lopez, G., Aragon, J., Perea, E. J. Effect of azithromycin, roxithromycin and erythromycin on human polymorphonuclear leukocyte function againstStaphylococcus aureus. Chemotherapy 36 (1990) 422–427.Google Scholar
  55. 55.
    Labro, M. T., el-Benna, J., Charlier, N., Abdelghaffar, H., Hakim, J. Cefdinir (CI-983), a new oral amino-2-thiazolyl cephalosporin, inhibits human neutrophil myeloperoxidase in the extracellular medium but not the phagolysosome. J. Immunol. 152 (1994) 2447–2455.Google Scholar
  56. 56.
    Shaio, M. F., Chang, F. Y. Influence of cefodizime on chemotaxis and the respiratory burst in neutrophils from diabetics. J. Antimicrob. Chemother. 26 (1990) 55–59.Google Scholar
  57. 57.
    Grochla, I., Ko, H. L., Beuth, J., Roszkowski, K., Roszkowski, W., Pulverer, G. Effects of beta-lactam antibiotics imipenem/cilastatin and cefodizime on cellular and humoral immune responses in BALB/c-mice. Int. J. Med. Microbiol. 274 (1990) 250–258.Google Scholar
  58. 58.
    Meroni, P. L., Capsoni, F., Borghi, M. O., Barcellini, W., Minonzio, F., Ongari, A. M., Fain, C., Hu, C., Brambilla, G., Pettenati, C., Zanussi, C. Immunopharmacological activity of cefodizime in young and elderly subjects:in vitro andex vivo studies. Infection 20 (Suppl. 1) (1992) S61-S63.Google Scholar
  59. 59.
    Tullio, V., Cuffini, A. M., Fazari, S., Carlone, N. A. Cefonicid potentiation of human macrophage activity. Microbiologica 15 (1992) 219–226.Google Scholar
  60. 60.
    Schubert, S., Ullmann, U. Influence of cefpodoxime on selected immunological functions and bacterial pathogenicity factorsin vitro. Int. J. Med. Microbiol. 275 (1991) 233–240.Google Scholar
  61. 61.
    Braga, P. C., Piatti, G., Dal-Sasso, M., Maci, S., Blasi, F. Thein vitro effects of ceftibuten on the host defense mechanism. Chemotherapy 40 (1994) 37–41.Google Scholar
  62. 62.
    Leonardi, M. S., Garotta, F., Berlinghieri, M. C., Bonina, L., Mastroeni, P. Influence of ceftizoxime on the immune system. Chemioterapia 6 (1987) 417–419.Google Scholar
  63. 63.
    Labro, M. T., Babin-Chevaye, C., Pochet, I., Hakim, J. Interaction of ceftriaxone with human polymorphonuclear neutrophil function. J. Antimicrob. Chemother. 20 (1987) 849–855.Google Scholar
  64. 64.
    Moran, F. J., Puente, L. F., Perez-Giraldo, C., Hurtado, C., Blanco, M. T., Gomez-Garcia, A. C. Effects of cefpirome in comparison with cefuroxime against human polymorphonuclear leucocytesin vitro. J. Antimicrob. Chemother. 33 (1994) 57–62.Google Scholar
  65. 65.
    Baker, P. J., Wilson, M. E. Effect of clindamycin on neutrophil killing of gram-negative periodontal bacteria. Antimicrob. Agents Chemother. 32 (1988) 1521–1527.Google Scholar
  66. 66.
    Sahu, A., Saha, K., Banerjee, N. R., Sehgal, V. N., Jagga, C. R. Effect of anti-leprosy drugs on superoxide anion production by rat peritoneal macrophage with special reference to light exposed clofazimine. Int. J. Immunopharmacol. 13 (1991) 419–428.Google Scholar
  67. 67.
    Dahlgren, C., Norberg, B., Eriksson, S. Doxycycline effects on the adherence of polymorphonuclear leukocytes to an albumin-coated glass surface. Scand. J. Infect. Dis. 19 (1987) 545–549.Google Scholar
  68. 68.
    Dumas, R., Brouland, J. P., Tedone, R., Descotes, J. Influence of macrolide antibiotics on the chemiluminescence of zymosan-activated human neutrophils. Chemotherapy 36 (1990) 381–384.Google Scholar
  69. 69.
    Bacci, P., Grossi, A., Vannucchi, A. M., Rafanelli, D., Casini, A., De Luca, M. Effects of miocamycin and erythromycin on polymorphonuclear cell function. J. Chemother. 4 (1992) 268–270.Google Scholar
  70. 70.
    Naess, A., Flo, R. W., Solberg, C. O. Effect of fusidic acid on migration and chemiluminescence of polymorphonuclear leukocytes. Eur. J. Clin. Microbiol. Infect. Dis. 9 (1990) 42–44.Google Scholar
  71. 71.
    Kharazmi, A., Nielsen, H. Fusidic acid and human phagocyte function. [Letter] J. Antimicrob. Chemother. 22 (1988) 262–263.Google Scholar
  72. 72.
    Easmon, C. S. Interaction of meropenem with humoral and phagocytic defences. J. Antimicrob. Chemother. 24 (Suppl. A) (1989) 259–264.Google Scholar
  73. 73.
    Rodriguez, A. B., Pariente, J., Prieto, J., Barriga, C. Effects of cefmetazol, cefoxitin and imipenem on polymorphonuclear leukocytes. Gen. Pharmacol. 18 (1987) 613–615.Google Scholar
  74. 74.
    Kazmierczak, A., Pechinot, A., Siebor, E., Cordin, X., Labia, R. Sulbactam: secondary mechanisms of action. Diagn. Microbiol. Infect. Dis. 12 (4 Suppl.) (1989) 139S-146S.Google Scholar
  75. 75.
    Kumae, T., Saburi, Y., Nasu, M., Misumi, J., Kawata, N. Effects of cefbuperazone on the chemiluminescence of human neutrophils. Chemotherapy 35 (1989) 260–266.Google Scholar
  76. 76.
    Labro, M. T. Cefodizime as a biological response modifier: a review of itsin-vivo, ex-vivo andin-vitro immunomodulatory properties. J. Antimicrob. Chemother. 26 (Suppl. C) (1990) 37–47.Google Scholar
  77. 77.
    Vanholder, R., Van Landschoot, N., Dagrosa, E., Ringoir, S. Cefodizime: a new cephalosporin with apparent immune-stimulating properties in chronic renal failure. Nephrol. Dial. Transplant. 3 (1988) 221–224.Google Scholar
  78. 78.
    Scaglione, F., Ferrara, F., Duganani, S., Demartini, G., Triscari, F., Fraschini, F. Immunostimulation by clarithromycin in healthy volunteers and chronic bronchitis patients. J. Chemother. 5 (1993) 228–232.Google Scholar
  79. 79.
    Kitz, D. J., Neuman, H. R., Little, J. R. Clindamycin enhances murine delayed-type hypersensitivity and anti-candidal activity. J. Antimicrob. Chemother. 23 (1989) 721–728.Google Scholar
  80. 80.
    Astry, C. L., Nelson, S., Karam, G. H., Summer, W. R. Interactions of clindamycin with antibacterial defenses of the lung. Am. Rev. Respir. Dis. 135 (1987) 1015–1019.Google Scholar
  81. 81.
    Santos, J. I., Arbo, A., Pavia, N. In vitro andin vivo effects of clindamycin on polymorphonuclear leukocyte function. Clin. Ther. 14 (1992) 578–594.Google Scholar
  82. 82.
    Bassaris, H. P., Lianou, P. E., Skoutelis, A. T., Papavassiliou, J. T. In-vivo effects of clindamycin on polymorphonuclear leucocyte phagocytosis and killing of gram-negative organisms. J. Antimicrob. Chemother. 19 (1987) 467–473.Google Scholar
  83. 83.
    Nunez, R. M., Rodriguez, A. B., Barriga, C., De-la-Fuente, M. In vitro andin vivo effects of imipenem on phagocytic activity of murine peritoneal macrophages. APMIS 97 (1989) 879–886.Google Scholar
  84. 84.
    Pedrera, M. I., Perez, F., Rodriguez, A. B., Barriga, C. Stimulation of phagocytosis againstStaphylococcus aureus by teicoplanin and vancomycin. Rev. Esp. Fisiol. 49 (1993) 231–234.Google Scholar
  85. 85.
    Labro, M. T. Immunological evaluation of cefodizime: a unique molecule among cephalosporins. Infection 20 (Suppl. 1) (1992) S45-S47.Google Scholar
  86. 86.
    Gialdroni-Grassi, G., Shah, P. M. Cefodizime host-defence enhancement: considerations of dose-response relationships in healthy volunteers. Infection 20 (Suppl. 1) (1992) S51-S53.Google Scholar
  87. 87.
    Fietta, A., Bersani, C., Bertoletti, R., Grassi, F. M., Grassi, G. G. In vitro andex vivo enhancement of nonspecific phagocytosis by cefodizime. Chemotherapy 34 (1988) 430–436.Google Scholar
  88. 88.
    Vanholder, R., Ringoir, S. Cefodizime: enhancement of depressed phagocytosis-associated respiratory burst activity in chronic uremic patients. Infection 20 (Suppl. 1) (1992) S71-S74.Google Scholar
  89. 89.
    Dammacco, F., Benvestito, S. Effects of cefodizime on non-specific immune functions in patients with multiple myeloma. Infection 20 (Suppl. 1) (1992) S64-S66.Google Scholar
  90. 90.
    Ueta, E., Yoneda, K., Yamamoto, T., Osaki, T. Upregulatory effects of cefpimizole natrium on human leukocytes. Int. J. Immunopharmacol. 14 (1992) 877–885.Google Scholar
  91. 91.
    Cuffini, A. M., Carlone, N. A., Xerri, L., Pizzoglio, M. F. Synergy of ceftazidime and human macrophages on phagocytosis and killing ofStaphylococcus aureus andPseudomonas aeruginosa. J. Antimicrob. Chemother. 20 (1987) 261–271.Google Scholar
  92. 92.
    Fraschini, F., Scaglione, F., Ferrara, F., Dugnani, S., Zecca, L. Effects of lincomycin on the immune system. Chemotherapy 33 (1987) 61–67.Google Scholar
  93. 93.
    Fraschini, F., Scaglione, F., Ferrara, F., Dugnani, S., Falchi, M., Cattaneo, G. Miokamycin and leukocyte activity in man. Chemotherapy 35 (1989) 289–295.Google Scholar
  94. 94.
    Beccari, T., Mazzolla, R., Constanzi, E., Datti, A., Barluzzi, R., Bistoni, F., Orlacchio, A. Amphotericin B stimulates secretion of beta-hexosaminidase from mouse adherent spleen cells. Biochem. Int. 24 (1991) 235–241.Google Scholar
  95. 95.
    Aslanzadeh, J., Mormol, J. S., Little, J. R. Anticryptococcal activity of amphotericin B-stimulated macrophages. Immunopharmacol. Immunotoxicol. 13 (1991) 465–483.Google Scholar
  96. 96.
    Wilson, E., Thorson, L., Speert, D. P. Enhancement of macrophage superoxide anion production by amphotericin B. Antimicrob. Agents Chemother. 35 (1991) 796–800.Google Scholar
  97. 97.
    Okai, Y., Ishizaka, S. A possible immunomodulating activity of arbekacin (ABK), a newly synthesized antibiotic against methicillin-resistantStaphylococcus aureus (MRSA). Int. J. Immunopharmacol. 16 (1994) 321–327.Google Scholar
  98. 98.
    Rodriguez, A. B., Sanchez, C., Barriga, C. Effect of aztreonam upon human polymorphonuclear leukocyte functions. Comp. Immunol. Microbiol. Infect. Dis. 15 (1992) 131–136.Google Scholar
  99. 99.
    Adinolfi, L. E., Utili, R., Dilillo, M., Tripodi, M. F., Attanasio, V., Ruggiero, G. Intracellular activity of cefamandole and aztreonam against phagocytosedEscherichia coli andStaphylococcus aureus. J. Antimicrob. Chemother. 24 (1989) 927–935.Google Scholar
  100. 100.
    Lingaas, E., Midtvedt, T. The influence of cefoperazone, cefotaxime, ceftazidime and aztreonam on phagocytosis by human neutrophilsin vitro. J. Antimicrob. Chemother. 23 (1989) 701–710.Google Scholar
  101. 101.
    Velluti, G., Garuti, G. C., Bonucchi, M. E., Gilioli, F., Capelli, O., Rovatti, E., Covi, M. Activity of aztreonam in pneumology, part 2: Influence on phagocytosis and intracellular killing of human alveolar macrophages. J. Chemother. 6 (1994) 44–49.Google Scholar
  102. 102.
    Scheffer, J., Knoller, J., Cullmann, W., Konig, W. Effects of cefaclor, cefetamet and Ro 40-6890 on inflammatory responses of human granulocytes. J. Antimicrob. Chemother. 30 (1992) 57–66.Google Scholar
  103. 103.
    Oishi, K., Matsumoto, K., Yamamoto, M., Morito, T., Yoshida, T. Stimulatory effect of cefodizime on macrophage-mediated phagocytosis. J. Antibiot. Tokyo 42 (1989) 989–992.Google Scholar
  104. 104.
    Labro, M. T., Amit, N., Babin-Chevaye, C., Hakim, J. Cefodizime (HR 221) potentiation of human neutrophil oxygen-independent bactericidal activity. J. Antimicrob. Chemother. 19 (1987) 331–341.Google Scholar
  105. 105.
    Cuffini, A. M., Tullio, V., Fazari, S., Paizis, G., Carlone, N. A. The effects of sub-MICs of cefonicid on the interaction of human macrophages withKlebsiella pneumoniae. [Letter] J. Antimicrob. Chemother. 28 (1991) 933–935.Google Scholar
  106. 106.
    Korting, H. C., Seitz, R., Kreller, W. Influence of various concentrations of cefotiam and ceftizoxime on the phagocytosis of gonococci by polymorphonuclear granulocytes. Arzneimittelforschung 39 (1989) 428–431.Google Scholar
  107. 107.
    Rodriguez, A. B., Barriga, C., de la Fuente, M. In vitro effect of cefoxitin on phagocytic function and antibody-dependent cellular cytotoxicity in human neutrophils. Comp. Immunol. Microbiol. Infect. Dis. 16 (1993) 37–50.Google Scholar
  108. 108.
    Roszkowski, K., Beuth, J., Ko, H. L., Peters, G., Pulverer, G. Comparative study on the macrolides erythromycin and clarithromycin: antibacterial activity and influence on immune responses. Int. J. Med. Microbiol. 273 (1990) 518–530.Google Scholar
  109. 109.
    Hand, W. L., Hand, D. L. Interactions of dirithromycin with human polymorphonuclear leukocytes. Antimicrob. Agents Chemother. 37 (1993) 2557–2562.Google Scholar
  110. 110.
    Naess, A., Solberg, C. O. Effects of two macrolide antibiotics on human leukocyte membrane receptors and functions. APMIS 96 (1988) 503–508.Google Scholar
  111. 111.
    Jacob, J. Linear gramicidin activates neutrophil functions and the activation is blocked by chemotactic peptide receptor antagonist. FEBS. Lett. 231 (1988) 139–142.Google Scholar
  112. 112.
    Rodriguez, A. B., Barriga, C., de la Fuente, M. Phagocytic function and antibody-dependent cellular cytotoxicity of human neutrophils in the presence of N-formimidoyl thienamycin. Agents Actions 31 (1990) 86–95.Google Scholar
  113. 113.
    Cuffini, A. M., Tullio, V., Allocco, A., Fazari, S., Giachino, F., Carlone, N. A. EnhancedStaphylococcus aureus susceptibility to immunodefences induced by sub-inhibitory and bactericidal concentrations of imipenem. J. Antimicrob. Chemother. 31 (1993) 559–568.Google Scholar
  114. 114.
    Capelli, A., Capelli, O., Azzolini, L., Richeldi, L., Prandi, E., Velluti, G. Activities of human alveolar macrophages (HAMs). Note 1: observations on phagocytosis and bacterial killing in the presence of miocamycin. Chemioterapia 7 (1988) 89–95.Google Scholar
  115. 115.
    Santos, J. I., Arbo, A. Thein vitro effect of sulbactam on polymorphonuclear leukocyte function. Diagn. Microbiol. Infect. Dis. 12 (1989) 147S-152S.Google Scholar
  116. 116.
    Oda, H., Kadota, J., Kohno, S., Hara, K. Erythromycin inhibits neutrophil chemotaxis in bronchoalveoli of diffuse panbronchiolitis. Chest 106 (1994) 1116–1123.Google Scholar
  117. 117.
    Kenny, M. T., Balistreri, F. J., Torney, H. L. Beta-lactam antibiotic modulation of murine neutrophil cytokinesis. Immunopharmacol. Immunotoxicol. 14 (1992) 797–811.Google Scholar
  118. 118.
    Van der Auwera, P., Husson, M. Influence of rifampicin and ansamycin on motility and adherence of human neutrophils studiedin vitro. J. Antimicrob. Chemother. 24 (1989) 347–353.Google Scholar
  119. 119.
    Burgaleta, C., Moreno, T. Effect of beta-lactams and aminoglycosides on human polymorphonuclear leucocytes. J. Antimicrob. Chemother. 20 (1987) 529–535.Google Scholar
  120. 120.
    Van der Auwera, P., Husson, M. Influence of antibiotics on motility and adherence of human neutrophils studiedin vitro. Drugs Exp. Clin. Res. 15 (1989) 211–218.Google Scholar
  121. 121.
    Aho, P., Mannisto, P. T. Effects of two erythromycins, doxycycline and phenoxymethylpenicillin on human leucocyte chemotaxisin vitro. J. Antimicrob. Chemother. 21 (Suppl. D) (1988) 29–32.Google Scholar
  122. 122.
    Gabler, W. L., Smith, J., Tsukuda, N. Doxycycline reduction of F-actin content of human neutrophils and fibroblasts. Inflammation 18 (1994) 107–118.Google Scholar
  123. 123.
    Yousif, M. A., Hay, R. J. Leucocyte chemotaxis to mycetoma agents — the effect of the antifungal drugs griseofulvin and ketoconazole. Trans. R. Soc. Trop. Med. Hyg. 81 (1987) 319–321.Google Scholar
  124. 124.
    Roques, C., Frayret, M. N., Luc, J., Michel, G., Perruchet, A. M., Cauquil, J., Levy, D. Effect of anin vivo immunostimulant treatment on PMN functions: interactions with antibioticsin vitro. Int. J. Immunopharmacol. 13 (1991) 1051–1057.Google Scholar
  125. 125.
    Ueyama, Y., Misaki, M., Ishihara, Y., Matsumura, T. Effects of antibiotics on human polymorphonuclear leukocyte chemotaxisin vitro. Br. J. Oral. Maxillofac. Surg. 32 (1994) 96–99.Google Scholar
  126. 126.
    Pycock, J. F., Allen, W. E., Porter, D. J., Boyd, E. H. The effect of various antibacterial preparations on thein vitro morphology and chemotactic response of equine neutrophils. J. Vet. Pharmacol. Ther. 11 (1988) 191–196.Google Scholar
  127. 127.
    Torre, D., Broggini, M., Rossi, S., Sampietro, C., Botta, V. Effect of rokitamycin on human polymorphonuclear leukocyte chemotaxis. Int. J. Tissue. React. 11 (1989) 27–29.Google Scholar
  128. 128.
    Eda, R., Townley, R. G., Hopp, R. J. Effect of terfenadine on human eosinophil and neutrophil chemotactic response and generation of superoxide. Ann. Allergy 73 (1994) 154–160.Google Scholar
  129. 129.
    Gabler, W. L., Tsukuda, N. The influence of divalent cations and doxycycline on iodoacetamide-inhibitable leukocyte adherence. Res. Commun. Chem. Pathol. Pharmacol. 74 (1991) 131–140.Google Scholar
  130. 130.
    Nielsen, H. Antibiotics and human monocyte function. I. Chemotaxis. Acta. Pathol. Microbiol. Immunol. Scand. B. 95 (1987) 293–296.Google Scholar
  131. 131.
    Torre, D., Broggini, M., Botta, V., Sampietro, C., Busarello, R., Garberi, C. In vitro andex vivo effects of recent and new macrolide antibiotics on chemotaxis of human polymorphonuclear leukocytes. J. Chemother. 3 (1991) 236–239.Google Scholar
  132. 132.
    Hojo, M., Fujita, I., Hamasaki, Y., Miyazaki, M., Miyazaki, S. Erythromycin does not directly affect neutrophil functions. Chest 105 (1994) 520–523.Google Scholar
  133. 133.
    Goya, T., Torisu, M., Doi, F., Yoshida, T. Effects of granulocyte colony stimulating factor and monobactam antibiotics (aztreonam) on neutrophil functions in sepsis. Clin. Immunol. Immunopathol. 69 (1993) 278–284.Google Scholar
  134. 134.
    Moraes, J. R., Moraes, F. R., Bechara, G. H. Participation of macrophages in chloramphenicol-potentiated carrageenin-induced peritonitis in rats. Braz. J. Med. Biol. Res. 26 (1993) 497–507.Google Scholar
  135. 135.
    Skoutelis, A. T., Lianou, P. E., Bassaris, H. P. In vivo potentiation of polymorphonuclear leukocyte chemotaxis by clindamycin. Infection 21 (1993) 321–323.Google Scholar
  136. 136.
    Rodriguez, A. B., Barriga, C., de la Fuente, M. Mechanisms of action involved in the chemoattractant activity of three beta-lactam antibiotics upon human neutrophils. Biochem. Pharmacol. 41 (1991) 931–936.Google Scholar
  137. 137.
    Pulverer, G. Effects of cefodizime and cefotaxime on cellular and humoral immune responses. Infection 20 Suppl. 1 (1992) S41-S44.Google Scholar
  138. 138.
    Metcalf, J. F., Wilson, G. B. Use of mitogen-induced lymphocyte transformation to assess toxicity of aminoglycosides. J. Environ. Pathol. Toxicol. Oncol. 7 (1987) 27–37.Google Scholar
  139. 139.
    Schindler, J. J., Warren, R. P., Allen, S. D., Jackson, M. K. Immunological effects of amphotericin B and liposomal amphotericin B on splenocytes from immune-normal and immune-compromised mice. Antimicrob. Agents Chemother. 37 (1993) 2716–2721.Google Scholar
  140. 140.
    Heinle, S., Stunkel, K., Zahner, H., Drautz, H., Bessler, W. G. Immunosuppressive effects of the macrolide antibiotic bafilomycin towards lymphocytes and lymphoid cell lines. Arzneimittelforschung 38 (1988) 1130–1133.Google Scholar
  141. 141.
    Rouveix, B., Groult, F., Levacher, M. Beta-lactam antibiotics and human lymphocyte function: thein vitro effect on blastogenesis, lymphokine production and suppressor cell functions. Int. J. Immunopharmacol. 9 (1987) 567–575.Google Scholar
  142. 142.
    Ibrahim, M. S., Maged, Z. A., Haron, A., Khalil, R. Y., Attallah, A. M. Antibiotics and immunity: effects of antibiotics on natural killer, antibody dependent cell-mediated cytotoxicity and antibody production. Chemioterapia 6 (1987) 426–430.Google Scholar
  143. 143.
    Takeshita, K., Yamagishi, I., Harada, M., Otomo, S., Nakagawa, T., Mizushima, Y. Immunological and anti-inflammatory effects of clarithromycin: inhibition of interleukin 1 production of murine peritoneal macrophages. Drugs. Exp. Clin. Res. 15 (1989) 527–533.Google Scholar
  144. 144.
    Keicho, N., Kudoh, S., Yotsumoto, H., Akagawa, K. S. Antilymphocytic activity of erythromycin distinct from that of FK506 or cyclosporin A. J. Antibiot. Tokyo 46 (1993) 1406–1413.Google Scholar
  145. 145.
    Morikawa, K., Oseko, F., Morikawa, S. Immunomodulatory effect of fosfomycin on human B-lymphocyte function. Antimicrob. Agents Chemother. 37 (1993) 270–275.Google Scholar
  146. 146.
    Ingham, E. Modulation of the proliferative response of murine thymocytes stimulated by IL-1, and enhancement of IL-1 beta secretion from mononuclear phagocytes by tetracyclines. J. Antimicrob. Chemother. 26 (1990) 61–70.Google Scholar
  147. 147.
    Kloppenburg, M., Breedveld, F. C., Miltenburg, A. M., Dijkmans, B. A. Antibiotics as disease modifiers in arthritis. Clin. Exp. Rheumatol. 11 (Suppl. 8) (1993) S113-S115.Google Scholar
  148. 148.
    Ingham, E., Turnbull, L., Kearney, J. N. The effects of minocycline and tetracycline on the mitotic response of human peripheral blood-lymphocytes. J. Antimicrob. Chemother. 27 (1991) 607–617.Google Scholar
  149. 149.
    Manzella, J. P., Clark, J. K. Effects of quinolones on mitogen-stimulated human mononuclear leucocytes. J. Antimicrob. Chemother. 21 (1988) 183–186.Google Scholar
  150. 150.
    Konno, S., Adachi, M., Asano, K., Okamoto, K., Takahashi, T. Inhibition of human T-lymphocyte activation by macrolide antibiotic, roxithromycin. Life Sci. 51 (1992) 231–236.Google Scholar
  151. 151.
    Van den Bogert, C., Melis, T. E., Kroon, A. M. Mitochondrial biogenesis during the activation of lymphocytes by mitogens: the immunosuppressive action of tetracyclines. J. Leukoc. Biol. 46 (1989) 128–133.Google Scholar
  152. 152.
    Gismondo, M. R., Chisari, G., Lo-Bue, A. M. Effect of ampicillin and sulbactam/ampicillin on the immune system. J. Int. Med. Res. 19 (Suppl. 1) (1991) 24A-28A.Google Scholar
  153. 153.
    Ehlers, S., Hahn, H. The influence of ciprofloxacin treatmentin vivo on cell-mediated immunity toListeria monocytogenes. Zentralbl. Bakteriol. Mikrobiol. Hyg. A. 268 (1988) 259–270.Google Scholar
  154. 154.
    Munno, I., Arpinelli, F., Benedetti, M., Spoglianti, R., Ferlini, A. The effect of ofloxacin on the immune system of elderly patients. J. Antimicrob. Chemother. 25 (1990) 455–458.Google Scholar
  155. 155.
    Scordamaglia, A., Bagnasco, M., Borella, F., Colombo, F., Ciprandi, G., Canonica, G. W. Effects of tetroxoprim and sulfadiazine on T lymphocyte proliferation and gamma-interferon production. J. Chemother. 1 (1989) 207–210.Google Scholar
  156. 156.
    Valcke, Y., Van der Straeten, M. Changes in lymphocyte subpopulations in patients treated with cefodizime for acute lower respiratory tract infections. Infection 20 (Suppl. 1) (1992) S58-S60.Google Scholar
  157. 157.
    Mazuran, R., Tomasic, J., Broketa, G., Schrinner, E. Immunophenotypization of cells involved in local immune response and serum antibodies in cephalosporin-treated mice. Drugs. Exp. Clin. Res. 17 (1991) 445–450.Google Scholar
  158. 158.
    Mallmann, P., Bruhl, P. Immunological effects of cefodizime in patients undergoing antineoplastic chemotherapy. Infection 20 Suppl. 1 (1992) S67-S70.Google Scholar
  159. 159.
    Mallmann, P., Bruhl, P., Dagrosa, E. E., Reeves, A. Effect of cefodizime on parameters of cell-mediated immunityin vitro. Arzneimittelforschung 42 (1992) 567–570.Google Scholar
  160. 160.
    Tomazic, J., Kotnik, V., Wraber, B. In vivo administration of azithromycin affects lymphocyte activityin vitro. Antimicrob. Agents Chemother. 37 (1993) 1786–1789.Google Scholar
  161. 161.
    Barriga-Ibars, C., Muriel, E., Benitez, P., de la Fuente, M. Effects of imipenem and cefmetazol on lymphocyte receptors CD2, Fc and C3b of complement. Comp. Immunol. Microbiol. Infect. Dis. 14 (1991) 297–302.Google Scholar
  162. 162.
    Petit, J. C., Burghoffer, B., Richard, G., Daguet, G. L. Effect of imipenem (N-formimidoyl-thienamycin) on thein-vitro lymphocyte proliferation. J. Antimicrob. Chemother. 20 (1987) 871–874.Google Scholar
  163. 163.
    Henry-Toulme, N., Hermier, B., Seman, M. Immunomodulating properties of the N-(1-deoxy-D-fructos-lyl) derivative of amphotericin B in mice. Immunol. Lett. 20 (1989) 63–67.Google Scholar
  164. 164.
    Konno, S., Adachi, M., Asano, K., Kawazoe, T., Okamoto, K., Takahashi, T. Influences of roxithromycin on cell-mediated immune responses. Life. Sci. 51 (1992) 107–112.Google Scholar
  165. 165.
    Exon, J. H., Stevens, M. G., Koller, L. D., Mather, G. G. Immunotoxicity assessment of gentamicin and liquamycin. Vet. Hum. Toxicol. 31 (1989) 427–430.Google Scholar
  166. 166.
    Stokes, D. C., Shenep, J. L., Fishman, M., Hildner, W. K., Bysani, G. K., Rufus, K. Polymyxin B prevents lipopolysaccharide-induced release of tumor necrosis factor-alpha from alveolar macrophages. J. Infect. Dis. 160 (1989) 52–57.Google Scholar
  167. 167.
    Konno, S., Asana, K., Kurokawa, M., Ikeda, K., Okamoto, K., Adachi, M. Antiasthmatic activity of a macrolide antibiotic, roxithromycin: analysis of possible mechanismsin vitro andin vivo. Int. Arch. Allergy. Immunol. 105 (1994) 308–316.Google Scholar
  168. 168.
    Raponi, G., Ghezzi, M. C., Mancini, C., Filadoro, F. Preincubation ofCandida albicans strains with amphotericin B reduces tumor necrosis factor alpha and interleukin-6 release by human monocytes. Antimicrob. Agents Chemother. 37 (1993) 1958–1961.Google Scholar
  169. 169.
    Roche, Y., Fay, M., Gougerot-Pocidalo, M. A. Effects of quinolones on interleukin 1 productionin vitro by human monocytes. Immunopharmacology 13 (1987) 99–109.Google Scholar
  170. 170.
    Bendtzen, K., Diamant, M., Faber, V. Fusidic acid, an immunosuppressive drug with functions similar to cyclosporin A. Cytokine 2 (1990) 423–429.Google Scholar
  171. 171.
    Roche, Y., Fay, M., Gougerot-Pocidalo, M. A. Interleukin-1 production by antibiotic-treated human monocytes. J. Antimicrob. Chemother. 21 (1988) 597–607.Google Scholar
  172. 172.
    Tokuda, Y., Tsuji, M., Yamazaki, M., Kimura, S., Abe, S., Yamaguchi, H. Augmentation of murine tumor necrosis factor production by amphotericin Bin vitro andin vivo. Antimicrob. Agents Chemother. 37 (1993) 2228–2230.Google Scholar
  173. 173.
    Hirakata, Y., Kaku, M., Mizukane, R., Ishida, K., Furuya, N., Matsumoto, T., Tateda, K., Yamaguchi, K. Potential effects of erythromycin on host defense systems and virulence ofPseudomonas aeruginosa. Antimicrob. Agents Chemother. 36 (1992) 1922–1927.Google Scholar
  174. 174.
    Kita, E., Sawaki, M., Nishikawa, F., Mikasa, K., Yagyu, Y., Takeuchi, S., Yasui, K., Narita, N., Kashiba, S. Enhanced interleukin production after long-term administration of erythromycin stearate. Pharmacology 41 (1990) 177–183.Google Scholar
  175. 175.
    Kita, E., Sawaki, M., Mikasa, K., Hamada, K., Takeuchi, S., Maeda, K., Narita, N. Alterations of host response by a long-term treatment of roxithromycin. J. Antimicrob. Chemother. 32 (1993) 285–294.Google Scholar
  176. 176.
    Chia, J. K., Pollack, M. Amphotericin B induces tumor necrosis factor production by murine macrophages. J. Infect. Dis. 159 (1989) 113–116.Google Scholar
  177. 177.
    Tufano, M. A., Cipollaro de l'Ero, G., Ianniello, R., Baroni, A., Galdiero, F. Antimicrobial agents induce monocytes to release IL-1 alpha, IL-6, and TNF, and induce lymphocytes to release IL-4 and TNF tau. Immunopharmacol. Immunotoxicol. 14 (1992) 769–782.Google Scholar
  178. 178.
    Petit, J. C., Daguet, G. L., Richard, G., Burghoffer, B. Influence of ciprofloxacin and piperacillin on interleukin-1 production by murine macrophages. [Letter] J. Antimicrob. Chemother. 20 (1987) 615–617.Google Scholar
  179. 179.
    Bailly, S., Pocidalo, J. J., Fay, M., Gougerot-Pocidalo, M. A. Differential modulation of cytokine production by macrolides: interleukin-6 production is increased by spiramycin and erythromycin. Antimicrob. Agents Chemother. 35 (1991) 2016–2019.Google Scholar
  180. 180.
    Damais, C., Jupin, C., Parant, M., Chedid, L. Induction of human interleukin-1 production by polymyxin B. J. Immunol. Methods 101 (1987) 51–56.Google Scholar
  181. 181.
    Neal, D. E., Kaack, M. B., Baskin, G., Roberts, J. A. Attenuation of antibody response to acute pyelonephritis by treatment with antibiotics. Antimicrob. Agents Chemother. 35 (1991) 2340–2344.Google Scholar
  182. 182.
    Villa, M. L., Valenti, F., Scaglione, F., Falchi, M., Fraschini, F. In-vivo andin-vitro interference of antibiotics with antigen-specific anti-body responses: effect of josamycin. J. Antimicrob. Chemother. 24 (1989) 765–774.Google Scholar
  183. 183.
    Akahane, K., Furuhama, K., Kato, M., Une, T., Onodera, T. Influences of cephem antibiotics on the immune response in mice. Chemotherapy 36 (1990) 300–307.Google Scholar
  184. 184.
    Corrales, I., Suarez, A., Lima, A., Ballestero, S., Gomez-Lus, M. L., Prieto, J. Clindamycin and tetracycline as immunomodulating agents: anin vivo study. Drugs. Exp. Clin. Res. 15 (1989) 409–415.Google Scholar
  185. 185.
    Villa, M. L., Valenti, F., Mantovani, M., Scaglione, F., Clerici, E. Macrolidic antibiotics: effects on primaryin vitro antibody responses. Int. J. Immunopharmacol. 10 (1988) 919–924.Google Scholar
  186. 186.
    Ventura, M. M., Romagnoli, M., Santucci, S., Sforza, C., Gatti, G., Carandente, O. Cefodizime administration in healthy subjects: studies of natural killer cells, urinary hormones and electrolytes. Chronobiologia 15 (1988) 43–59.Google Scholar
  187. 187.
    Agostoni, C., Giovannini, M., Fraschini, F., Scaglione, F., Galluzzo, C., Riva, E., Ferrara, F. Comparison of miocamycin versus amoxycillin in lower respiratory tract infections in children. Clinical response and effect on natural killer activity. J. Int. Med. Res. 16 (1988) 305–311.Google Scholar

Copyright information

© MMV Medizin Verlag GmbH München 1996

Authors and Affiliations

  • B. Van Vlem
    • 1
  • R. Vanholder
    • 1
  • P. De Paepe
    • 1
  • S. Ringoir
    • 1
  • D. Vogelaers
    • 2
  1. 1.Dept. of NephrologyUniversity HospitalGhentBelgium
  2. 2.Dept. of Intensive CareUniversity HospitalGhentBelgium

Personalised recommendations