Structural optimization

, Volume 4, Issue 3–4, pp 250–252 | Cite as

Generalized shape optimization without homogenization

  • G. I. N. Rozvany
  • M. Zhou
  • T. Birker
Brief Notes

Abstract

Two types of solutions may be considered in generalized shape optimization. Absolute minimum weight solutions, which are rather unpractical, consist of solid, empty and porous regions. In more practical solutions of shape optimization, porous regions are suppressed and only solid and empty regions remain. This note discusses this second class of problems and shows that a solid, isotropic microstructure with an adjustable penalty for intermediate densities is efficient in generating optimal topologies.

Keywords

Microstructure Civil Engineer Optimal Topology Shape Optimization Minimum Weight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendsøe, M.P. 1989: Optimal shape design as a material distribution problem.Struct. Optim. 1, 193–202Google Scholar
  2. Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method.Comp. Meth. Appl. Mech. Eng. 71, 197–224Google Scholar
  3. Díaz, A.R.; Bendsøe, M.P. 1992: Shape optimization of multipurpose structures by a homogenization method.Struct. Optim. 4, 17–22Google Scholar
  4. Hemp, W.S. 1973:Optimum structures. Oxford: ClarendonGoogle Scholar
  5. Kohn, R.V.; Allaire, G. 1992: Structural optimization using homogenization.Proc. NATO ARW “Topology design of structures” (held in Sesimbra, Portugal). Dordrecht: KluwerGoogle Scholar
  6. Kohn, R.V.; Strang, G. 1983: Optimal design for torsional rigidty. In: Atluri, S.N.; Gallagher, R.H.; Zienkiewicz, O.C. (eds.)Hybrid and mixed finite element methods, pp. 281–288. Chichester: Wiley & SonsGoogle Scholar
  7. Kohn, R.V.; Strang, G. 1986: Optimal design and relaxation of variational problems, I, II, and III.Comm. Pure Appl. Math. 39, 113–137, 139–182, 353–377Google Scholar
  8. Lurie, K.A.; Cherkaev, A.V. 1984; G-closure for some particular set of admissible material characteristics for the problem of bending of thin elastic plates.JOTA,42, 305–316Google Scholar
  9. Michell, A.G.M. 1904: The limits of economy of material in framestructures.Phil. Mag. 8, 589–597Google Scholar
  10. Murat, F.; Tartar, L. 1985: Calcul des variations et homogénéisation. In:Les méthodes de l'homogénéisation: Théorie et applications en physique, pp. 319–370. Eyrolles, Paris: Coll. de la Dir. des Etudes et Recherches de Elec. de FranceGoogle Scholar
  11. Olhoff, N.; Bendsøe, M.P.; Rasmussen, J. 1991: On CAD-integrated structural topology and design optimization.Comp. Meth. Appl. Mech. Eng. 89, 259–279Google Scholar
  12. Ong, T.G.; Rozvany, G.I.N.; Szeto, W.T. 1988: Least-weight design of perforated elastic plates for given compliance: non-zero Poisson's ratio.Comp. Meth. Appl. Mech. Eng. 66, 301–322Google Scholar
  13. Prager, W.; Rozvany, G.I.N. 1977: Optimal layout of grillages.J. Struct. Mech. 5, 1–18Google Scholar
  14. Rozvany, G.I.N.; 1992: Optimal layout theory: analytical solutions for elastic structures with several deflection constraints and load conditions.Struct. Optim. 4, 247–249Google Scholar
  15. Rozvany, G.I.N.; Olhoff, N.; Bendsøe, M.P.; Ong, T.G.; Sandler, R.; Szeto, W.T. 1987: Least-weight design of perforated elastic plates I, II.Int. J. Solids Struct. 23, 521–536, 537–550Google Scholar
  16. Rozvany, G.I.N.; Zhou, M. 1991: The COC algorithm, Part I: cross-section optimization or sizing.Comp. Meth. Appl. Mech. Eng. 89, 281–308Google Scholar
  17. Sankaranarayanan, S.; Haftka, R.T.; Kapania, R.K. 1992: Truss topology optimization with simultaneous analysis and design.Proc. 33rd AIAA/ASME/ASCE/AHS/ASC Struct. Dyn. Mat. Conf. (held in Dallas), pp. 2576–2585. Washington DC: AIAAGoogle Scholar
  18. Suzuki, K.; Kikuchi, N. 1991: A homogenization method for shape and topology optimization.Comp. Meth. Appl. Mech. Eng. 93, 291–318Google Scholar
  19. Vigdergauz, S. 1992: Two-dimensional grained composites of extreme rigidity.18th Int. Congr. Theor. Appl. Mech. (held in Haifa)Google Scholar
  20. Zhou, M.; Rozvany, G.I.N. 1991: The COC algorithm, Part II: topological, geometrical and generalized shape optimization.Comp. Meth. Appl. Eng. 89, 309–336Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. I. N. Rozvany
    • 1
  • M. Zhou
    • 1
  • T. Birker
    • 1
  1. 1.FB 10, Essen UniversityEssen 1Germany

Personalised recommendations