Structural optimization

, Volume 4, Issue 3–4, pp 186–192 | Cite as

Optimal design of rigid-plastic annular plates with piecewise constant thickness

  • A. Salupere
Technical Papers
  • 43 Downloads

Abstract

Rigid-plastic stepped annular plates under uniform pressure load are considered. Both plate edges are supported. Four types of boundary conditions are studied. Tresca's yield condition is used. Such plate dimensions are sought for which the plate of constant volume has the maximal load carrying capacity.

Keywords

Boundary Condition Civil Engineer Optimal Design Maximal Load Constant Volume 

Notation

a, d, R, h1, h2

plate dimensions (Fig. 1)

Q*

shear force

Q

dimensionless shear force

Mr*

radial bending moment

M1

dimensionless radial bending moment

Mt*

circumferential bending moment

M2

dimensionless circumferential bending moment

Mk

maximum value of bending moments in the rigid region

p*

uniform pressure load

p

dimensionless uniform pressure load

r

radial coordinate

x

dimensionless radial coordinate

α, ϒ, ϑ

dimensionless parameters for plate (5)

V

plate volume

Δ

dimensionless plate volume

M0*

yield moment

σ0

yield stress

p0

load carrying capacity

p0m

maximum value of the load carrying capacity

p0u

load carrying capacity for uniform plate

αm, ϒm

optimal parameters, which correspond to the maximum value ofp0

si

radius of circle between different plastic stages

(′)

∂/∂x

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drucker, D.C.; Shield, R.T., 1957: Bounds of minimum weight design.Quart. Appl. Math. 15, 3 269–281Google Scholar
  2. Lamblin, D.O.; Guerlement, G.; Save, M.A., 1985: Solution de dimensionnement plastique de volume minimal de plaque circulaires pleines et sandwiches en presence de contraites technologiques.J. Mec. Theor. Appl. 4, 433–461Google Scholar
  3. Lepik, Ü. 1963: Load carrying capacity of nonhomogeneous plates and shells.Izv. Akad. Nauk SSSR, OTN, Mekhanika i Mashinostrojenie. 4, 167–171 (in Russian)Google Scholar
  4. König, J.A.; Rychlevski, J., 1966: Limit analysis of circular plates with jump homogeneity.Int. J. Solids Struct. 2, 493–513Google Scholar
  5. Mróz, Z.; Sawczuk, A., 1960: Load carrying capacity of annular plates, which are supported on both edges.Izv. Akad. Nauk SSSR, OTN, Mekhanika i Mashinostrojenie. 3, 72–78 (in Russian)Google Scholar
  6. Rozvany, G.I.N. 1976:Optimal design of flexural systems: beams, grillages, slabs, plates and shells. Pergamon Press.Google Scholar
  7. Save, M.; Massonet, C., 1972:Plastic analysis and design of plates, shells and disks. Amsterdam: North HollandGoogle Scholar
  8. Save, M. 1985: Limit analysis of plates and shells: research over two decades.J. Struct. Mech. 13, 343–370Google Scholar
  9. Vallner, H. 1960: On the load carrying capacity of annular plates.Proc. Estonian Agricultural Academy. 17, 162–175 (in Estonian)Google Scholar
  10. Vallner, H. 1961: Calculation of the load carrying capacity of rigidplastic annular plates.Inform. Bulletin. VINITI Akad. Nauk SSSR. 2, 89–98 (in Russian)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Salupere
    • 1
  1. 1.Department of Structural MechanicsTallinn Technical UniversityTallinnEstonia

Personalised recommendations