Advertisement

Structural optimization

, Volume 8, Issue 4, pp 228–235 | Cite as

On singular topologies in exact layout optimization

  • G. I. N. Rozvany
  • T. Birker
Technical Papers

Abstract

The causes of singular structural topologies, which prevent most iterative computational algorithms from reaching the global optimal solution, are explained in the light of the theory of exact optimal layouts. This theory is also used for deriving eight fundamental characteristics of singular topologies. The above findings are illustrated with case studies of exact optimal layouts for a single load and for two load conditions with stress constraints.

Keywords

Civil Engineer Load Condition Structural Topology Computational Algorithm Fundamental Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barta, J. 1957: On the minimum weight of certain redundant structures.Acta Techn. Acad. Sci. Hung. 18, 67–76Google Scholar
  2. Birker, T.; Lewiński, T.; Rozvany, G.I.N. 1994: A well-posed non-selfadjoint layout problem: least-weight plane truss for one load condition and two displacement constraints.Struct. Optim. 8, 195–205Google Scholar
  3. Cheng, G.; Jiang, Z. 1992: Study on topology optimization with stress constraints.Eng. Optimiz. 20, 129–148Google Scholar
  4. Dorn, W.S.; Gomory, R.E.; Greenberg, H.J. 1964: Automatic design of optimal structures.J. de Mécanique 3, 25–52Google Scholar
  5. Kirsch, U. 1990: On singular topologies in optimum structural design.Struct. Optim. 2, 133–142Google Scholar
  6. Kirsch, U. 1994: Singular and local optima in structural optimization.Proc. AIAA/NASA/USAF/ISSMO Symp. on Multidisciplinary Analysis and Optimization (held in Panama City, FL, Sept. 1994), pp. 150–160. Washington D.C.: AIAAGoogle Scholar
  7. Lewiński, T.; Zhou, M.; Rozvany, G.I.N. 1994: Extended exact solutions for least-weight truss layouts. Parts I, II.Int. J. Mech. Sci. 36, 375–398, 399–419Google Scholar
  8. Michell, A.G.M. 1904: The limits of economy of material in framestructures.Phil. Mag. 8, 589–597Google Scholar
  9. Prager, W. 1978: Optimal layout of trusses with a finite number of joints.J. Mech. Phys. Solids 26, 241–250Google Scholar
  10. Prager, W.; Shield, R.T. 1967: A general theory of optimal plastic design.J. Appl. Mech. ASME 34, 184–186Google Scholar
  11. Rozvany, G.I.N. 1974/1975: Analytical treatment of some extended problems in structural optimization, Part II.J. Struct. Mech. 3, 387–402Google Scholar
  12. Rozvany, G.I.N. 1989:Structural design via optimality criteria. Dordrecht: KluwerGoogle Scholar
  13. Rozvany, G.I.N.; Birker, T.; Lewiński, T. 1994: Some unexpected properties of exact least-weight plane truss layouts with displacement constraints for several alternate loads.Struct. Optim. 7, 76–86Google Scholar
  14. Rozvany, G.I.N.; Prager, W. 1976: Optimal design of partially discretized grillages.J. Mech. Phys. Solids 24, 125–136Google Scholar
  15. Rozvany, G.I.N.; Zhou, M.; Birker, T. 1993: Why multi-load topology designs based on orthogonal microstructures are in general non-optimal.Struct. Optim. 6, 200–204Google Scholar
  16. Rozvany, G.I.N.; Zhou, M.; Gollub, W. 1993: Layout optimization by COC methods: analytical solutions. In: Rozvany, G.I.N. (ed.)Optimization of large structural systems (Proc. NATO/DFG ASI, held in Berchtesgaden 1991), pp. 77–102. Dordrecht: KluwerGoogle Scholar
  17. Schmit, L.A: 1960: Structural design by systematic synthesis.Proc. 2nd Nat. Conf. on Elec. Comp. ASCE (held in Pittsburgh, PA, Sept. 1960), pp. 105–132Google Scholar
  18. Sved, G. 1954: The minimum weight of certain redundant structures.Austral. J. Appl. Sci. 5, 1–8Google Scholar
  19. Sved, G.; Ginos, Z. 1968: Structural optimization under multiple loading.Int. J. Mech. Sci. 10, 803–805Google Scholar
  20. Zhou, M.; Rozvany, G.I.N. 1992/1993: DCOC — an optimality criteria method for large systems. Part I: theory, Part II: algorithm.Struct. Optim. 5, 12–25;6, 250–262Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • G. I. N. Rozvany
    • 1
  • T. Birker
    • 1
  1. 1.FB 10Essen UniversityEssenGermany

Personalised recommendations