Advertisement

Glucoamylase production byAspergillus awamori on rice flour medium and partial characterization of the enzyme

  • Fatima Pestana
  • F. J. Castillo
Research Papers

Summary

Aspergillus awamori ATCC 22342 was selected from 12 strainsof Aspergillus spp.and Rhizopus spp. as the best producer of amylase. Optimal growth conditions for the enzyme production in shake flasks were provided by: a medium containing 60 g/1 rice flour, 0.075% (w/v) NaNO2 and 0.075% (v/v) corn-steep liquor, a temperature of 30° C and initial pH value of 6.5. The enzyme was characterized as a glucoamylase with a molecular weight of 49,000. Maximum enzyme activity occurred at 45 C and pH 5.8. The enzyme was stable at 40° C and lost 70 and 90% of activity when heated for 30 min at 50 and 60°C, respectively. Thermal inactivation was slowed in the presence of starch. Michaelis-Menten constants for soluble starch and dextrin were estimated as 12.5 and 33.3 mg/ml, respectively. This enzyme may be used for the production of glucose-rich syrups from rice starch.

Keywords

Starch Aspergillus NaNO2 Como Dextrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Production de glucoamylase par Aspergillus awamori cultivé sur milieu à la farine de riz et caractérisation partielle de l'enzyme

Résumé

Aspergillus awamori ATCC 22342 a été sélectionné parmi 12 souches d'Aspergillus spp. et deRhizopus spp. comme étant le meilleur producteur d'amylase. Les conditions optimales de croissance pour la production d'enzyme en fioles agitées sont: un milieu contenant 60 g/1 de farine de riz, 0.075% (w/v) de NaNO2 et 0.075% (v/v) de liqueur de corn steep, une température de 30° C et un pH initial de 6.5. L'enzyme a été caractérisé comme étant une glucoamylase de poids moléculaire 49,000. L'activité maximum de l'enzyme se situe à 45°C et pH 5.8. L'enzyme est stable à 40°C et perd 70 et 90% de son activité par chauffage pendant 30 min à 50 et à 60°C, respectivement. L'inactivation thermique est ralentie en présence d'amidon. Les constantes de Michaelis-Menten pour l'amidon soluble et pour la dextrine ont été éstimées, respectivement, à 12.5 et 33.3 mg/ml. Cet enzyme peut être utilisé pour la production de sirops riches en glucose à partir d'amidon de riz.

Producción de glucoamilasa por Aspergillus awamori en harina de arroz y caracterización parcial del enzima

Resumen

Aspergillus awamori ATCC 22342 se seleccionó entre 12 cepas deAspergillus spp. y deRhizopus spp. como el mejor productor de amilasa. La condiciones óptimas de crecimiento para la producción del enzima en frascos de agitación fueron las siguientes: un medio con la composicion siguiente: 60 g/1 de harina de arroz, 0.075% (m/v) NaNO2 y 0.075% (v/v) de extracto de maíz (corn steep liquor); una temperatura de 30°C y un pH inicial de 6.5. El enzima fue caracterizado como una glucoamilasa de peso molecular 49,000. La máxima actividad enzimática se obtuvo a 45°C con un pH de 5.8. El enzima era estable a 40 C pero perdió un 70 y un 90% de su actividad cuando se calentó durante 30 min a 50 y 60° C respectivamente. La inactivación térmica fue más lenta en presencia de almidón. Las constantes de Michaelis-Menten para almidón soluble y para dextrina se estimaron como 12.5 y 33.3 mg/ml respectivamente. Este enzima puede utilizarse para la producción de jarabes ricos en glucosa a partir de almidón de arroz.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANON 1980Trade Yearbook, vol. 34, p. 171. F.A.O. Statistics Series No. 35, Rome.Google Scholar
  2. ANON 1981Production Yearbook, vol 35, p. 98. F.A.O. Statistics Series No. 40, Rome.Google Scholar
  3. CADMUS, M. C., JAYCO, L. G., HENSLEY, D. E., GASDORF, H. & SMILEY, K. L. 1966 Enzymatic production of glucose syrup from grains and its use in fermentations.Cereal Chemistry 43, 658–669.Google Scholar
  4. CHEN, P. S., TORIBARA, T. Y. & WARNER, H. 1956 Microdetermination of phosphorus.Analytical Chemistry 28, 1756–1758.Google Scholar
  5. GODFREY, T. & REICHELT, J. 1983 Textiles. InIndustrial Enzymology, ed. Godfrey T. & Reichelt J., pp. 397–409. New York: The Nature Press.Google Scholar
  6. HAYASHIDA, S. 1975 Selective submerged productions of three types of glucomylases by black koji mold.Agricultural and Biological Chemistry 39, 2093–2099.Google Scholar
  7. HERBERT, D., PHIPPS, D. J. & STRANGE, R. E. 1975 Chemical analysis of microbial cells. InMethods in Microbiology, ed. Norris, J. R. & Ribbons, D. W., vol. 5B, pp. 249–252. London: Academic Press.Google Scholar
  8. HERNANDEZ, E. & PIRT, S. J. 1975 Kinetics of utilisation of a highly polymerised carbon source (starch) in a chemostat culture ofKlebsiella aerogenes: pullulanase and α-amylase activities.Journal of Applied Chemistry and Biotechnology 25, 297–304.Google Scholar
  9. JOHNSON, J. C. 1977Industrial Enzymes: Recent Advances. pp. 148–196. Park Ridge, New Jersey: Noyes Data Corporation.Google Scholar
  10. MACALLISTER, R. V. 1979 Nutritive sweeteners made from starch. InAdvances in Carbohydrate Chemistry and Biochemistry, ed. Tipson, R. S. & Horton, D. vol. 36, pp. 15–56.Google Scholar
  11. MICHELENA, V. V. & CASTILLO, F. J. 1984 Production of amylase byAspergillus foetidus on rice flour medium and characterization of the enzyme.Journal of Applied Bacteriology 56, 395–407.Google Scholar
  12. NEVALAINEN, K. M. H. & PALVA, E. T. 1979 Improvements of amyloglucosidase production ofAspergillus awamori by mutagenic treatments.Journal of Chemical Technology and Biotechnology 29, 390–395.Google Scholar
  13. NORMAN, B. E. 1979 The application of polysaccharide degrading enzymes in the starch industry. InMicrobial Poly saccharides and Poly saccharoses, ed. Berkeley, R. C. W., Goodway, G. W. & Ellwood, D. C., pp. 339–376. London: Academic Press.Google Scholar
  14. PARK, Y. K. & DESANTI, M. S. 1977 Induction of high amylosglucosidase-producing mutant fromAspergillus awamori.Journal of Fermentation Technology 55, 193–195.Google Scholar
  15. PARK, Y. K. & RIVERA, B. C. 1982 Alcohol production from various enzyme-converted starches with or without cooking.Biotechnology and Bioengineering 24, 495–500.Google Scholar
  16. REICHELT, J. 1983 Starch. InIndustrial Enzymology, ed. Godfrey, T. & Reichelt, J. pp. 375–396. New York: The Nature Press.Google Scholar
  17. SAHA, B. C. & UEDA, S. 1979 Glucoamylase produced by submerged culture ofAspergillus oryzae. InAnnual Reports of the International Center of Cooperative Research and Development in Microbial Engineering, vol. 2. pp. 95–126. Osaka University, Japan.Google Scholar
  18. SCOTT, T. A. & MELVIN, E. H. 1953 Determination of dextran with anthrone.Analytical Chemistry 25, 1650–1661.Google Scholar
  19. SMILEY, K. L., CADMUS, M. C., HENSLEY, D. E. & LAGODA, A. A. 1964 High-potency amyloglucosidase-producing mold of theAspergillus niger group.Applied Microbiology 12, 455.Google Scholar
  20. SOLOMON, B. & LEVIN, Y. 1974 Studies on the binding of amyloglucodisase to inert proteins.Biotechnology and Bioengineering 16, 1393–1398.Google Scholar
  21. TAYLOR, P. M., NAPIER, E. J. & FLEMING, I.D. 1978 Somepropertiesof aglucoamylase produced by the thermophilic fungusHumicola lanuginosa.Carbohydrate Research 61, 301–308.Google Scholar
  22. TAYLOR, M. J. & RICHARDSON, J. 1979 Applications of microbial enzymes in food systems and in biotechnology. InAdvances in Applied Microbiology, ed. Perlman, D., vol. 25, pp. 7–35, New York: Academic Press.Google Scholar
  23. TREVELYAN, W. E., PROCTER, D. P. & HARRISON, J. S. 1950 Detection of sugar on paper chromatograms.Nature, London 166, 444–445.Google Scholar
  24. UEDA, S., ZENIN, C. T., MONTEIRO, D. A. & PARK, Y. K. 1981 Production of ethanol from raw cassava starch by a nonconventional fermentation method.Biotechnology and Bioengineering 23, 291–299.Google Scholar
  25. WILLIAMS, C. A. & CHASE, M. W. 1968Methods in Immunology and Immunochemistry, vol. 2. pp. 365–408. New York: Academic Press.Google Scholar
  26. YAMASAKI, Y., SUZUKI, Y. & OZAWA, J. 1977a Purification and properties of two forms of glucoamylase fromPenicillium oxalicum.Agricultural and Biological Chemistry 41, 755–762.Google Scholar
  27. YAMASAKI, Y., SUZUKI, Y. & OZAWA, J. 1977b Three forms of α-glucosidase and a glucoamylase fromAspergillus awamori.Agricultural and Biological Chemistry 41, 2149–2161.Google Scholar
  28. YAMASAKI, Y., TSUBOI, A. & SUZUKI, Y. 1977c Two forms of glucoamylase fromMucor rouxianus.Agricultural and Biological Chemistry 41, 2139–2148.Google Scholar

Copyright information

© Oxford University Press 1985

Authors and Affiliations

  • Fatima Pestana
    • 1
  • F. J. Castillo
    • 1
  1. 1.Laboratorio de Fermentacion, Centro de Microbiologia y Biologia CellularInstituto Venezolano de Investigaciones Cientificas (IVIC)CaracasVenezuela

Personalised recommendations