Advertisement

Potential role of engineered microbes to de-toxify chemical pollutants

  • S. Balajee
  • A. Mahadevan
Review

Summary

Microorganisms dissimilate a variety of organic substances. However, a few are recalcitrant to microbial attack. To degrade these substances, the biochemical activities of microorganisms need to be amplified either by increasing the activities of the existing pathways or evolving new degradative pathways. Genetic engineering offers tremendous scope in constructing powerful strains with enhanced dissimilating potential, multiple dissimilatory trait, to evolve hybrid pathways and in stabilising the degradative trait. Barrier to the successful application of the genetically-manipulated strains is anticipated in their environmental application. The prospects of using genetically-engineered strains to control pollution are emphasized.

Keywords

Microbe Potential Role Organic Substance Genetic Engineering Environmental Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Rôle potentiel de microorganismes manipulés génétiquement pour détoxifier les polluants chimiques

Résumé

Les microorganismes catabolisent une variété de substances organiques. Toutefois un petit nombre de ces dernières sont récalcitrantes à l'attaque microbienne. Pour dégrader ces substances, les capacités biochimiques des microorganismes doivent être amplifiées soit en augmentant les activités de chemins métaboliques existants soit en créant de nouveaux chemins cataboliques. L'ingéniérie offre un large éventail de construction de souches puissantes avec un potentiel catabolique accru ou une aptitude catabolique multiple pour créer des chemins métaboliques hybrides et stabiliser l'aptitude catabolique. On pressent une barrière dans l'appliction couronnée de succès des souches manipulées génétiquement dans l'environnement. On met en évidence les perspectives de l'emploi de souches manipulées génétiquement pour contrôler la pollution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balajee, S., Boominathan, K. &Mahadevan, A. 1986 Phenolic degradation by dissimilatory plasmid.Nature (London) 319, 728.Google Scholar
  2. Bayley, S. A., Duggleby, C. J., Worsey, H. J., Williams, P. A., Hardy, K. G. &Broda, P. 1977 Two modes of loss of TOL function fromPseudomonas putida mt-2.Molecular and General Genetics 154, 203–204.Google Scholar
  3. Boominathan, K. 1985 Study of CAT Plasmid and Catechin Degradation byPseudomonas solanacearum. Ph.D Thesis, University of Madras, Madras.Google Scholar
  4. Boominathan, K. &Mahadevan, A. 1987 Plasmid encoded dissimilation of condensed tannin inPseudomonas solanacearum.FEMS Microbiology Letters 40, 147–150.Google Scholar
  5. Boominathan, K., Gurujeyalakshmi, G., Balajee, S. &Mahadevan, A. 1988 The xenodissimilatory plasmid.Current Science 57, 1182.Google Scholar
  6. Bruhn, C., Bayly, R. C. &Knackmuss, H. J. 1988 Thein vivo construction of 4-chloro-2-nitrophenol assimilatory bacteria.Archives of Microbiology 150, 171–177.Google Scholar
  7. Chakrabarthy, A. M. 1972 Genetic basis of the biodegradation of salicylate inPseudomonas.Journal of Bacteriology 112, 815–823.Google Scholar
  8. Chakrabarthy, A. M. 1973 Genetic fusion of incompatible plasmids inPseudomonas.Proceedings of the National Academy of Sciences USA,70, 1641–1644.Google Scholar
  9. Chang, A. C. Y. &Cohen, S. N. 1978 Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15 cryptic mini plasmid.Journal of Bacteriology 134, 1141–1156.Google Scholar
  10. Chatterjee, D. K. &Chakrabrthy, A. M. 1983 Genetic homology between independently isolated chlorobenzoate degradative plasmids.Journal of Bacteriology 153, 532–534.Google Scholar
  11. Clark, C. G. &Wright, S. J. L. 1970 Detoxication of isopropyl N-phenyl carbamate (IPC) and isopropyl-N-3-chlorophenylcarbamate (CIPC) in soil, and isolation of IPC metabolizing bacteria.Soil Biology and Biochemistry 2, 19–27.Google Scholar
  12. Dagley, S. 1978 Pathway for the utilization of organic growth substrates. InThe Bacteria, Vol. 6, eds. Ornston, L. N. and Sokatch, J. R. pp. 305–388. New York: Academic Press.Google Scholar
  13. Day, J. M. 1982 What are plasmids? InPlasmids. p. 52. London: Edward Arnold.Google Scholar
  14. Fisher, P. R., Appleton, J. &Pemberton, J. M. 1978 Isolation and characterization of pesticide degrading plasmid pJP1 fromAlcaligenes paradoxus.Journal of Bacteriology 135, 798–804.Google Scholar
  15. Franklin, F. C. H., Bagdasarian, M. &Timmis, K. N. 1981 Manipulation of degradative genes of soil bacteria. InMicrobial degradation of xenobiotics and recalcitrant compounds, eds. Leisinger, T., Cook, A. M., Hutter, R. and Nuesch, J. pp. 109–130. London: Academic Press.Google Scholar
  16. Friello, D. A., Mylroie, J. R. &Chakrabarthy, A. M. 1976Proceedings of the 3rd International Biodegradation Symposium. pp. 205–214. London: Applied Science Publishers.Google Scholar
  17. Furukawa, K., Miyazaki, T. &Domizuku, N. 1985 SAL-TOLin vivo recombinant plasmid pKF439.Journal of Bacteriology 162, 1325–1328.Google Scholar
  18. Ghosal, D., You, I. S., Chatterjee, D. K. &Chakrabarthy, A. M. 1985 Microbial degradation of halogenated compounds.Science 228, 135–142.Google Scholar
  19. Goldstein, R. M., Mallory, L. M. &Alexander, M. 1985 Reasons for possible failure of inoculation to enhance biodegradation.Applied and Environmental Microbiology 50, 977–983.Google Scholar
  20. Golovleva, L. A., Peterson, R. N., Boronin, A. M., Travkin, V. M. &Kozlovsky, S. A. 1988 Kelthane degradation by genetically engineeredPseudomonas aeruginosa BS827 in a soil ecosystem.Applied and Environmental Microbiology 54, 1587–1590.Google Scholar
  21. Gurujeyalakshmi, G., Balajee, S., Boominathan, K. &Mahadevan, A. 1988 Dissimilatory plasmids.Journal of Scientific and Industrial Research 47, 81–97.Google Scholar
  22. Haas, D. 1983 Genetic basis of biodegradation by pseudomonads.Experientia 39, 1199–1213.Google Scholar
  23. Jacoby, G. A. 1977 Classification of plasmids inPseudomonas aeruginosa. InMicrobiology-1977, ed Schlessinger, D. pp. 221–224. Washington, DC: American Society of Microbiology.Google Scholar
  24. Johnson, J. B. &Robinson, S. G. 1984 Opportunities for development of new detoxification processes through genetic engineering. InGenetic Engineering and New Pollution Control Technologies, ed. Pierce, G. E. pp. 301–314. New York: Noyces.Google Scholar
  25. Keshavarz, T., Lilly, M. D. &Clarke, P. H. 1985 Stability of a catabolic plasmid in continuous culture.Journal of General Microbiology 131, 1193–1203.Google Scholar
  26. Kilbane, J. J., Chatterjee, D. K. &Chakrabarthy, A. M. 1983 Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil byPseudomonas cepacia.Applied and Environmental Microbiology 45, 1697–1700.Google Scholar
  27. Klecka, G. M. &Maier, W. J. 1985 Kinetics of microbial growth on pentachlorophenol.Applied and Environmental Microbiology 49, 46–53.Google Scholar
  28. Larson, R. J., Clinckemaille, G. G. &Van Belle, L. 1981 Effect of temperature and dissolved oxygen on biodegradation of nitrilotriacetate.Water Research 15, 615–620.Google Scholar
  29. Latorre, J., Reineke, W. &Knackmuss, H. J. 1984 Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange.Archives of Microbiology 140, 159–165.Google Scholar
  30. Lehrbach, P. R. &Timmis, K. N. 1983 Genetic analysis and manipulation of catabolic pathways inPseudomonas.Biochemical Society Symposium 48, 191–219.Google Scholar
  31. Lehrbach, P. R., Zeyer, J., Reineke, W., Knackmuss, H. J. &Timmis, K. N. 1984 Enzyme recruitmentin vitro: use of cloned genes to extend the range of haloaromatics degraded byPseudomonas sp.Journal of Bacteriology 158, 1025–1032.Google Scholar
  32. Leisinger, T. 1983 Microorganisms and xenobiotic compounds.Experientia 39, 1183–1191.Google Scholar
  33. Le Rudulier, D. &Valentine, R. C. 1982 Genetic engineering in agriculture: Osmoregulation.Trends in Biochemical Sciences 7, 431–433.Google Scholar
  34. Mahadevan, A. &Muthukumar, G. 1980 Aquatic microbiology with reference to tannin degradation.Hydrobiologia 72, 73–79.Google Scholar
  35. Maugh, T. H. 1978 Chemicals: How many are there?Science 199, 162.Google Scholar
  36. Novick, R., Royston, C. C., Stanley, N. C., Curtiss, R., Naomi, D. &Stanley, F. 1976 Uniform nomenclature for bacterial plasmids: A proposal.Bacteriological Review 40, 168–189.Google Scholar
  37. Oltmans, R. H., Rast, H. G. &Reineke, W. 1988 Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria.Applied Microbiology Biotechnology 28, 609–616.Google Scholar
  38. Pierce, G. E., Facklam, T. J. &Rice, J. M. 1981 Isolation and characterization of plasmids from environmental strains of bacteria capable of degrading the herbicide 2,4-dichlorophenoxyacetic acid.Developments in Industrial Microbiology 22, 401–408.Google Scholar
  39. Pignatello, J. J., Martinson, M. M., Steiert, J. G., Carlson, R. E. &Crawford, R. L. 1983 Biodegradation and photolysis of pentachlorophenol in artificial fresh water streams.Applied and Environmental Microbiology 46, 1024–1031.Google Scholar
  40. Ramos, J. L., Wasserfallen, A., Rose, K. &Timmis, K. N. 1987 Redesigning metabolic routes: Manipulation of TOL plasmid pathway for catabolism of alkylbenzoates.Science 235, 593–596.Google Scholar
  41. Reid, D. S. 1980 Water activity as the criterion of water availability. InContemporary Microbial Ecology, pp. 15–27. eds. Ellwood, D. C., Hedger, J. N., Latham, M. J., Lynch, J. M. and Slater, J. H. New York: Academic Press.Google Scholar
  42. Reineke, W. &Knackmuss, H. J. 1978 Chemical structure and biodegradability of halogenated aromatic compounds: Substituent effects on 1,2-dioxygenation of benzoic acid.Biochemica et Biophysica Acta 542, 412–413.Google Scholar
  43. Reineke, W. &Knackmuss, H. J. 1979 Construction of haloaromatics utilizing bacteria.Nature (London) 277, 385–386.Google Scholar
  44. Reineke, W. &Knackmuss, H. J. 1980 Hybrid pathway for chlorobenzoate metabolism inPseudomonas sp. B13 derivatives.Journal of Bacteriology 142, 467–473.Google Scholar
  45. Reineke, W., Jeenes, D. J., Williams, P. A. &Knackmuss, H. J. 1982a TOL plasmid pWWO in constructed halobenzoate degradingPseudomonas strains: prevention ofmeta pathway.Journal of Bacteriology 150, 195–201.Google Scholar
  46. Reineke, W., Wessels, S. W., Rubio, M. A., Latorre, J., Schwein, U., Schmidt, E., Schlomann, M. &Knackmuss, H. J. 1982b Degradation of monochlorinated aromatics following transfer of genes encoding chlorocatechol catabolism.FEMS Microbiology Letters 14, 291–294.Google Scholar
  47. Rubio, M. A., Engesser, K. H. &Knackmuss, H. J. 1986 Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange.Archives of Microbiology 145, 116–122.Google Scholar
  48. Schmidt, E., Hellwig, M. &Knackmuss, H. J. 1983 Degradation of chlorophenols by a defined microbial community.Applied and Environmental Microbiology 46, 1038–1044.Google Scholar
  49. Shaler, T. A. &Klecka, G. M. 1986 Effects of dissolved oxygen concentration on biodegradation of 2,4-dichlorophenoxyacetic acid.Applied and Environmental Microbiology 51, 950–955.Google Scholar
  50. Shine, J. &Dalgarno, L. 1975 Determinant of cistron specificity on bacterial ribosomes.Nature (London) 254, 34–38.Google Scholar
  51. Spain, J. C., Van Veld, P. A., Monti, C. A., Pritchard, P. H. &Cripe, C. R. 1984 Comparison of p-nitrophenol biodegradation in field and laboratory test systems.Applied and Environmental Microbiology 48, 944–950.Google Scholar
  52. Teidje, J. M. &Mason, R. B. 1974 Biodegradation of nitrilotriacetic acid in soils.Soil Science Society American Proceedings 38, 278–282.Google Scholar
  53. Timmis, K. N., Lehrbach, P. R., Harayama, S., Don, R. H., Mermod, N., Bas, C., Leppick, R., Weightman, A. J., Reineke, W. &Knackmuss, H. J. 1985 Analysis and manipulation of plasmid encoded pathways for the catabolism of aromatic compounds by soil bacteria. InPlasmids in Bacteria, pp. 719–739. eds. Helinski, D. R., Cohen, S. N., Clewell, D. B., Jackson, D. A. and Hollaender, A. New York: Plenum Press.Google Scholar
  54. Weisshar, M. M., Franklin, F. C. H. &Reineke, W. 1987 Molecular cloning and expression of the 3-chlorobenzoate degrading genes fromPseudomonas sp. B13.Journal of Bacteriology 169, 394–402.Google Scholar
  55. Wiggins, B. A., Jones, S. H. &Alexander, M. 1987 Explanation for the acclimation period preceding the mineralization of organic chemicals in aquatic environments.Applied and Environmental Microbiology 53, 791–796.Google Scholar
  56. Windlass, J. D., Worsey, M. J., Pioli, A. M., Barth, P. T., Atherson, K. T. &Dart, E. C. 1980 Improved conversion of methanol to single cell protein byMethylophilus methylotrophus.Nature (London) 287, 396–401.Google Scholar
  57. Wong, C. L. &Dunn, N. W. 1976 Combined chromosomal and plasmid encoded control for the degradation of phenol inPseudomonas putida.Genetic Research (Cambridge) 27, 405–412.Google Scholar
  58. Wyndham, R. C. 1986 Evolved aniline catabolism inAcinetobacter calcoaceticus during continuous culture of river water.Applied and Environmental Microbiology 51, 781–789.Google Scholar
  59. Zeyer, J., Lehrbach, P. R. &Timmis, K. N. 1985 Use of cloned genes ofPseudomonas TOL plasmid to effect biotransformation of benzoates to cis-dihydrodiols and catechols byEscherichia coli cells.Applied and Environmental Microbiology 50, 1409–1413.Google Scholar

Copyright information

© Oxford University Press 1989

Authors and Affiliations

  • S. Balajee
    • 1
  • A. Mahadevan
    • 1
  1. 1.Centre for Advanced Study in BotanyUniversity of MadrasMadrasIndia

Personalised recommendations