Skip to main content
Log in

Cellular and cytokine responses of the human central nervous system to intracranial administration of tumor necrosis factor α for the treatment of malignant gliomas

  • Original articles
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

To elucidate the role of tumor necrosis factor α (TNFα) as a biological response modifier, we studied cellular and cytokine responses of the central nervous system to TNFα administered intracranially in a phase I clinical trial for patients with malignant gliomas. Six patients received injections of TNFα (1.25×103−10×103 U/injection) into the tumor cavities, and regional fluids (RF) and lumbar cerebrospinal fluids (CF) were serially sampled before and after the injections. Recruitment of neutrophils occurred, mostly peaking 8 h after TNFα injection, and fewer numbers of CD4+ T cells and monocytes/macrophages migrated, subsequently peaking at 24 h. The CF leukocytosis persisted for 48 h and was associated with an increased level of neutrophil chemotactic activity in the CF. This neutrophil chemotactic activity was attributed to interleukin-8 (IL-8) by HPLC. The level of IL-6 activity in the CF and RF consistently increased; beginning 2 h after TNFα injection and reaching the maximum between 8 h and 12 h. It returned to the basal level within 48 h. IL-1β was detected in the CF of three patients, its level peaking at 8 h. Prostaglandin E2 also increased after injection of TNFα, peaking between 4 h and 12 h and then gradually decreasing. Transforming growth factor γ was found in all cases tested and one patient showed a significant change after TNFα injection. IL-2 activity, interferon α (INFα) activity, IFNβ, and granulocyte/macrophage-colony-stimulating factor were not detected in the CF or RF. In conclusion, TNFα is biologically effective in inducing migration of immune cells and generating multiple cytokine responses in the human central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe Y, Sekiya S, Yamashita T, Sendo F (1990) Vascular hyperpermeability induced by tumor necrosis factor and its augmentation by IL-1 and IFN-γ is inhibited by selective depletion of neutrophils with a monoclonal antibody. J Immunol 145: 2902

    Google Scholar 

  2. Bartsch HH, Pfizenmaier K, Schröder M, Nagel GA (1989) Intralesional application of recombinant human tumor necrosis factor α induces local tumor regression in patients with advanced malignancies. Eur J Cancer Clin Oncol 25: 287

    Google Scholar 

  3. Berendt MJ, Morth RJ, Kirstein DP (1978) The immunological basis of endotoxin-induced tumor regression. Requirement for a preexisting state of concomitant anti-tumor immunity. J Exp Med 148: 1560

    Google Scholar 

  4. Black KL, Hoff JT, McGillicuddy JE, Gebarski SS (1986) Increased leukotriene C4 and vasogenic edema surrounding brain tumors in humans. Ann Neurol 19: 592

    Google Scholar 

  5. Blick M, Sherwin SA, Rosenblum M, Gutterman J (1987) Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res 47: 2986

    Google Scholar 

  6. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666

    Google Scholar 

  7. Conkling PR, Chua CC, Nadler P, Greenberg CS, Doty E, Misukonis MA, Haney AF, Bast RCJr, Weinberg JB (1988) Clinical trials with human tumor necrosis factor: in vivo and in vitro effects on human mononuclear phagocyte function. Cancer Res 48: 5604

    Google Scholar 

  8. Creagan ET, Kovach JS, Moetel CG, Frytak S, Kvols LK (1988) A phase I clinical trial of recombinant human tumor necrosis factor. Cancer 62: 2467

    Google Scholar 

  9. Creaven PJ, Brenner DE, Cowens JW, Huben RP, Wolf RM, Takita H, Arbuck SG, Razack MS, Proefrock AD (1989) A phase I clinical trial of recombinant human tumor necrosis factor given daily for five days. Cancer Chemother Pharmacol 23: 186

    Google Scholar 

  10. Dinarello CA, Cannon JG, Wolff SM, Bernheim HA, Beutler B, Cerami A, Figari IS, Palladino MA Jr, O'Connor JV (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 163: 1433

    Google Scholar 

  11. Dinarello CA, Cannon JG, Mier JW, Bernheim HA, LoPreste G, Lynn DL, Love RN, Webb AC, Auron PE, Reuben RC, Rich A, Wolff S, Putney SD (1986) Multiple biological activities of human recombinant interleukin 1. J Clin Invest 77: 1734

    Google Scholar 

  12. Elias JA, Lentz V (1990) IL-1 and tumor necrosis factor synergistically stimulate fibroblast IL-6 production and stabilize IL-6 messenger RNA. J Immunol 145: 161

    Google Scholar 

  13. Feinberg B, Kurzrock R, Talpaz M, Blick M, Saks S, Gutterman JU (1988) A phase I clinical trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients. J Clin Oncol 6: 1328

    Google Scholar 

  14. Flick DA, Figgord GE (1984) Comparison of in vitro cell cytotoxic assay for tumor necrosis factor. J Immunol Methods 68: 167

    Google Scholar 

  15. Frei K, Malipiero UV, Leist TP, Zinkernagel RM, Schwab ME, Fontana A (1989) On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur J Immunol 19: 689

    Google Scholar 

  16. Grunfeld C, Palladino MAJr (1990) Tumor necrosis factor: immunologic, antitumor, metabolic, and cardiovascular activities. Adv Intern Med 35: 45

    Google Scholar 

  17. Gamble JR, Harlan JM, Klebanoff SJ, Vadas MA (1985) Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA 82: 8667

    Google Scholar 

  18. Helseth E, Torp S, Dalen A, Unsgaard G (1989) Effects of interferon-gamma and tumor necrosis factor-alpha on clonogenic growth of cell lines and primary cultures from human gliomas and brain metastases. APMIS 97: 569

    Google Scholar 

  19. Jablons DM, Mule JJ, McIntosh JK, Sehgal PB, May LT, Huang CM, Rosenberg SA, Lotze MT (1989) IL-6/IFN-β as a circulating hormone: induction by cytokine administration in humans. J Immunol 142: 1542

    Google Scholar 

  20. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, Kuramoto A, Kishimoto T (1988) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332: 83

    Google Scholar 

  21. Lachman L, Brown DC, Dinarello CA (1987) Growth-promoting effect of recombinant interleukin 1 and tumor necrosis factor for a human astrocytoma cell line. J Immunol 138: 2913

    Google Scholar 

  22. Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K (1989) The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243: 1464

    Google Scholar 

  23. Leist TP, Frei K, Kam-hansen S, Zenkernagel RM, Fontana A (1988) Tumor necrosis factor alpha in cerebrospinal fluid during bacterial but not viral meningitis. J Exp Med 167: 1743

    Google Scholar 

  24. LeMay LG, Vander AJ, Kuluger MJ (1990) Role of interleukin 6 in fever in rats. Amer J Physiol 258: R798

    Google Scholar 

  25. Midorikawa Y, Yamashita T, Sendou F (1990) Modulation of the immune response to transplanted tumors in rats by selective depletion of neutrophils in vivo using a monoclonal antibody: abrogation of specific transplantation resistance to chemical carcinogen-induced syngenic tumors by selective depletion of neutrophils in vivo. Cancer Res 50: 6243

    Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55

    Google Scholar 

  27. Mrowietz U, Schröder J-M, Christophers E (1988) Recombinant human tumor necrosis factor α lacks chemotactic activity for human peripheral blood neutrophils and monocytes. Biochem Biophys Res Commun 153: 1223

    Google Scholar 

  28. Mulé JJ, McIntosh JK, Jablons DM, Rosenberg SA (1990) Antitumor activity of recombinant interleukin 6 in mice. J Exp Med 171: 629

    Google Scholar 

  29. Mustafa MM, Ramilo O, Sáez-Llorens X, Olsen KD, Magness RR and McCracken GHJr (1990) Cerebrospinal fluid prostaglandins, interleukin 1β, and tumor necrosis factor in bacterial meningitis. Am J Dis Child 144: 883

    Google Scholar 

  30. Nobuhara M, Kanamori T, Ashida Y, Ogino H, Horisawa Y, Nakayama K, Asami T, Iketani M, Noda K, Andoh S, Kurimoto M (1987) The inhibition of neoplastic cell proliferation with human natural tumor necrosis factor. Jpn J Cancer Res 78: 193

    Google Scholar 

  31. North RJ, Bursuker I (1984) Generation and decay of the immune response to a progressive fibrosarcoma. J Exp Med 159: 1295

    Google Scholar 

  32. Otsuka Y, Nagano K, Nagano K, Hori K, Oh-ishi J, Hayashi H, Watanabe N, Niitsu Y (1990) Inhibition of neutrophil migration by tumor necrosis factor. Ex vivo and in vivo studies in comparison with in vitro effect. J Immunol 145: 2639

    Google Scholar 

  33. Pfreundschuh MG, Steinmetz HT, Tüschen R, Schenk V, Diehl V, Schaadt M (1988) Phase I study of intratumoral application of recombinant human tumor necrosis factor. Eur J Cancer 25: 379

    Google Scholar 

  34. Platanias LC, Vogelzang NJ (1990) Interleukin-1: biology, pathophysiology, and clinical prospects. Am J Med 89: 621

    Google Scholar 

  35. Ramilo I. Sáez-Llorens X, Mertsola J, Jafari H, Olsen KD, Hansen EJ, Yoshinaga M, Ohkawara S, Nariuchi H, McCracken GHJr (1990) Tumor necrosis factor alpha/cachectin and interleukin 1 beta initiate meningeal inflammation. J Exp Med 172: 497

    Google Scholar 

  36. Robinson EA, Yoshimura T, Leonard EJ, Tanaka S, Griffin PR, Shabanowitz J, Hunt DF, Appella E (1989) Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc Natl Acad Sci USA 86: 1850

    Google Scholar 

  37. Ruggiero V, Latham K, Baglioni C (1987) Cytostatic and cytotoxic activity of tumor necrosis factor on human cancer cells. J Immunol 138: 2711

    Google Scholar 

  38. Rutka JT, Giblin JR, Berens ME, Bar-Shiva E, Tokuda K, McCulloch JR, Rosenblum ML, Eessalu TE, Aggarwal BB, Bodell WJ (1988) The effects of human recombinant tumor necrosis factor on glioma-derived cell lines: cellular proliferation, cytotoxicity, morphological and radioreceptor studies. Int J Cancer 41: 573

    Google Scholar 

  39. Saukkonen K, Sande S, Gioffe C, Wolpe S, Sherry B, Cerami A, Tuomanen E (1990) The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. J Exp Med 171: 439

    Google Scholar 

  40. Sawamura Y, de Tribolet N (1990) Immunobiology of brain tumors. In: advances and technical standards in neurosurgery, vol 17. Springer, Wien, New York, p 3

    Google Scholar 

  41. Sawamura Y, Diserens A-C, de Tribolet N (1990) In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J Neurooncol 9: 125

    Google Scholar 

  42. Schall TJ, Bacon K, Toy KJ, Goeddel DV (1990) Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347: 669

    Google Scholar 

  43. Schell-Frederick E, Tepass T, Lorscheidt G, Pfreundschuh M, Schaadt M, Diehl V (1989) Effects of recombinant tumor necrosis factor (rHuTNFα) on human neutrophils and monocytes: in vitro, ex vivo and in vivo. Eur J Haematol 43: 286

    Google Scholar 

  44. Schiller JH, Storer BE, Witt PL, Alberti D, Tombes MB, Arzoomanian R, Procter RA, McCarthy D, Brown RR, Voss SD, Remick SC, Grem JL, Borden EC, Trump DL (1991) Biological and clinical effects of intravenous tumor necrosis factor-α administered three times weekly. Cancer Res 51: 1651

    Google Scholar 

  45. Schleuning M, Munker R (1990) Tumor necrosis factor: an update on basic research and clinical applications. Klin Wochenschr 68: 841

    Google Scholar 

  46. Selby P, Hobbs S, Viner C, Jackson E, Jones A, Newell D, Calvert AH, McElwain T, Fearon K, Humphereys J, Shiga T (1987) Tumour necrosis factor in man: clinical and biological observations. Br J Cancer 56: 803

    Google Scholar 

  47. Sherman ML, Spriggs DR, Arthur KA, Imamura K, Frei III E, Kufe DW (1988) Recombinant human tumor necrosis factor administered as five-day continuous infusion in cancer patients: phase I toxicity and effects on lipid metabolism. J Clin Oncol 6: 344

    Google Scholar 

  48. Spriggs DR, Sherman ML, Michie H, Arthur KA, Imamura K, Wilmore D, Frei III E, Kufe DW (1988) Recombinant human tumor necrosis factor administered as 24-h intravenous infusion. A phase I and pharmacologic study. JNCI 80: 1039

    Google Scholar 

  49. Strieter RM, Kunkel SL, Showell HJ, Remick DG, Phan SH, Ward PA, Marks RM (1989) Endothelial cell gene expression of a neutrophil chemotactic factor by TNFα, LPS, and IL-1β. Science 243: 1467

    Google Scholar 

  50. Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MAJr, Shepard HM (1985) Recombinant human tumor necrosis factor-α: Effects on proliferation of normal and transformed cells in vitro. Science 22: 943

    Google Scholar 

  51. Suzuki K, Asaoka K, Takahashi K, Fujikura T (1985) Differences among primates in defence against infection: sensitivity of polymorphonuclear leukocytes to fMet-Leu-Phe. Cell Biochem Funct 3: 297

    Google Scholar 

  52. Suzuki K, Miyasaka H, Ota H, Yamakawa Y, Tagawa M, Kuramoto A, Mizuno S (1989) Purification and partial primary sequence of a chemotactic protein for polymorphonuclear leukocyte derived from human lung giant cell carcinoma LU65C cells. J Exp Med 169: 1895

    Google Scholar 

  53. Van Meir E, Sawamura Y, Diserens A-C, Hamou M-F, de Tribolet N (1990) Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res 50: 6683

    Google Scholar 

  54. Van Meir E, Ceska M, Effenberger F, Walz A, Grouzmann E, Desbaillets I, Frei K, Fontana A, de Tribolet N (1992) Interleukin-8 is produced in neoplastic and infectious diseases of the human central nervous system. Cancer Res 52: 4297

    Google Scholar 

  55. Waage A, Halstensen A, Shalaby R, Brandtzaeg P, Kierulf P, Espevik T (1989) Local production of tumor necrosis factor alpha, interleukin 1, and interleukin 6, in meningococcal meningitis. Relation to the inflammatory response. J Exp Med 170: 1859

    Google Scholar 

  56. Wrann M, Bodmer S, de Martin R, Siepl C, Hofer-Warbinek R, Frei K, Hofer E, Fontana A (1987) T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-β. EMBO J 6: 1633

    Google Scholar 

  57. Zuber P, Accolla RS, Carrel S, Diserens AC, de Tribolet N (1988) Effects of recombinant human tumor necrosis factor-α on the surface phenotype and the growth of human malignant glioma cell lines. Int J Cancer 42: 780

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, M., Sawamura, Y., Sakuma, S. et al. Cellular and cytokine responses of the human central nervous system to intracranial administration of tumor necrosis factor α for the treatment of malignant gliomas. Cancer Immunol Immunother 36, 251–259 (1993). https://doi.org/10.1007/BF01740907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01740907

Key words

Navigation