Skip to main content
Log in

The caudal spinal cord of coho salmon (Oncorhynchus kisutch): Immunocytochemical evidence of a “caudal serotoninergic system”

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The caudal spinal cord of the coho salmon was investigated by means of immunocytochemistry using antisera against serotonin, urotensin I, urotensin II, somatostatin and a urea-extract of bovine Reissner's fiber (AFRU). Populations of serotonin-immunoreactive (IR) neurons were found rostral and dorsal to the urophysis in close spatial association with caudal secretory neurons. Thick, smooth serotonin-IR processes extended toward the external surface of the spinal cord where they displayed conspicuous terminal dilatations. Thin, beaded serotonin-IR fibers appeared to innervate populations of caudal secretory and somatostatin-IR cerebrospinal fluid-contacting neurons. Most caudal neurosecretory cells displayed both urotensin I and urotensin II immunoreactivities; only a minority reacted exclusively with either urotensin I or urotensin II antisera. Urotensin II-IR and somatostatin-IR cerebrospinal fluid (CSF)-contacting neurons were found as an integral component of the central canal wall in the caudal spinal cord and filum terminale; their dendritic processes appeared to contact Reissner's fiber, which displayed a weak AFRU-immunoreactivity while inside the central canal, but became strongly reactive in the interior of the terminal ventricle as it formed the massa caudalis. The distribution of serotoninergic processes points to a regulatory role in the function of caudal secretory and CSF-contacting neurons and to a putative serotonin release into the subarachnoid space and/or meningeal vasculature. It is also suggested that the CSF-contacting neurons of the central canal may participate in a feedback mechanism controlling the secretory activity of the subcommissural organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Audet C, Chevalier G (1981) Monoaminergic innervation of the caudal neurosecretory system of the brook troutSalvelinus fontinalis in relation to osmotic stimulation. Gen Comp Endocrinol 45:189–203

    PubMed  Google Scholar 

  • Bern HA, Takasugi N (1962) The caudal neurosecretory system of fishes. Gen Comp Endocrinol 2:96–110

    PubMed  Google Scholar 

  • Bern HA, Pearson D, Larson BA, Nishioka RS (1985) Neurohormones from fish tails: the caudal neurosecretory system. I. “Urophysiology” and the caudal neurosecretory system of fishes. In: Greep RO (ed) Recent Progress in Hormone Research. Academic Press, Orlando, FL, vol 41, pp 533–552

    Google Scholar 

  • Fridberg G (1963) Morphological studies on the caudal neurosecretory system in teleosts and elasmobranchs. Thesis, Ake Nyblom & Co., Stockholm

    Google Scholar 

  • Fridberg G, Bern HA (1968) The urophysis and the caudal neurosecretory system of fishes. Biol Rev 43:175–199

    PubMed  Google Scholar 

  • Hofer H, Meinel W, Erhardt H, Wolter A (1984) Preliminary electron-microscopical observations on the ampulla caudalis and the discharge of the material of Reissner's fibre into the capillary system of the terminal part of the tail of ammocoetes (Agnathi). Gegenbaurs Morphol Jahrb Leipzig 130:77–110

    Google Scholar 

  • Ichikawa T, Ishida I, Ohsako S, Deguchi T (1988) In situ hybridization demonstrating coexpression of urotensins I, II-α, and II-γ in the caudal neurosecretory neurons of the carp,Cyprinus carpio. Gen Comp Endocrinol 71:493–501

    PubMed  Google Scholar 

  • Ichikawa T, Lederis K, Kobayashi H (1983) Primary structures of multiple forms of urotensin II in the urophysis of the carp,Cyprinus carpio. Gen Comp Endocrinol 55:133–141

    Google Scholar 

  • Ichikawa T, McMaster D, Lederis K, Kobayashi H (1982) Isolation and amino acid sequence of urotensin I, a vasoactive and ACTH-releasing neuropeptide, from the carp (Cyprinus carpio) urophysis. Peptides 3:859–867

    PubMed  Google Scholar 

  • Ishida I, Ichikawa T, Deguchi T (1986) Cloning and sequence analysis of cDNA encoding urotensin I precursor. Proc Natl Acad Sci USA 83:308–312

    PubMed  Google Scholar 

  • Larson BA, Bern HA, Lin RJ, Nishioka RS (1987) A double sequential immunofluorescence method demonstrating the colocalization of urotensis I and II in the caudal neurosecretory system of the teleostGillichthys mirabilis. Cell Tissue Res 247:233–239

    PubMed  Google Scholar 

  • Lederis K, Letter A, McMaster D, Moore G, Schlesinger D (1982) Complete amino acid sequence of urotensin I, a hypotensive and corticotropin-releasing neuropeptide fromCatostomus. Science 218:162–164

    PubMed  Google Scholar 

  • McMaster D, Lederis K (1983) Isolation and amino acid sequence of two urotensin II peptides fromCatostomus urophysis. Peptides 4:367–373

    PubMed  Google Scholar 

  • McMaster D, Rivier J, Lederis K (1988) Isolation, amino acid sequence and synthesis of urotensin I fromHippoglossoides elassodon. In: Shiba T, Sakakibara S (eds) Peptide chemistry 1987 Protein Research Foundation, Osaka, Japan, pp 145–148

    Google Scholar 

  • Miller KE, Kriebel RM (1986) Peptidergic innervation of caudal neurosecretory neurons. Gen Comp Endocrinol 64:396–400

    PubMed  Google Scholar 

  • Montecuchi PC, Anastasi A, Castiglione R de, Ersparmer V (1980) Isolation and amino acid composition of sauvagine, an active polypeptide from methanol extracts of the skin of the South American frogPhyllomedusa sauvegi. Int J Pept Protein Res 16:191–199

    PubMed  Google Scholar 

  • O'Brien JP, Kriebel RM (1983) Caudal neurosecretory system synaptic morphology following deafferentation: an electron microscopic degeneration study. Brain Res Bull 10:89–95

    PubMed  Google Scholar 

  • Ohsako S, Ishida I, Ichikawa T, Deguchi T (1986) Cloning and sequence analysis of cDNAs encoding precursors of urotensins II-α and -γ. J Neurosci 6:2730–2735

    PubMed  Google Scholar 

  • Okawara Y, Morley ST, Burzio LO, Zwiers H, Lederis K, Richter D (1988) Cloning and sequence analysis of cDNA for corticotropin-releasing factor precursor from the teleost fishCatostomus commersoni. Proc Natl Acad Sci USA 85:8439–8443

    PubMed  Google Scholar 

  • Oksche A (1969) The subcommissural organ. J Neurol Visc Relat [Suppl] 9:111–139

    Google Scholar 

  • Olsson R (1955) Structure and development of the Reissner's fiber in the caudal end of amphioxus and some lower vertebrates. Acta Zool (Stockholm) 36:167–198

    Google Scholar 

  • Onstott D, Elde R (1986a) Coexistence of urotensin I/corticotropin-releasing factor and urotensin II immunoreactivities in cells of the caudal neurosecretory system of a teleost and an elasmobranch fish. Gen Comp Endocrinol 63:295–300

    PubMed  Google Scholar 

  • Onstott D, Elde R (1986b) Immunohistochemical localization of urotensin I/corticotropin-releasing factor, urotensin II, and serotonin immunoreactivities in the caudal spinal cord of nonteleost fishes. J Comp Neurol 249:205–225

    PubMed  Google Scholar 

  • Owada K, Yamada C, Kobayashi H (1985) Immunohistochemical investigation of urotensins in the caudal spinal cord of elasmobranchs and the lamprey,Lampetra japonica. Cell Tissue Res 242:527–530

    PubMed  Google Scholar 

  • Pearson D, Shively JE, Clark BR, Geschwind II, Barkley M, Nishioka RS, Bern HA (1980) Urotensin II: A somatostatinlike peptide in the caudal neurosecretory system of fishes. Proc Natl Acad Sci USA 77:5021–5024

    PubMed  Google Scholar 

  • Peruzzo B, Rodríguez S, Delannoy L, Hein S, Rodríguez EM, Oksche A (1987) Ultrastructural immunocytochemical study of the massa caudalis of the subcommissural organ-Reissner's fiber complex in lamprey larvae (Geotria australis): Evidence for a terminal vascular route of the secretory material. Cell Tissue Res 247:367–376

    Google Scholar 

  • Rivier J, Spiess J, Vale W (1983) Characterization of rat hypothalamic corticotropin-releasing factor. Proc Natl Acad Sci USA 80:4851–4855

    PubMed  Google Scholar 

  • Rodríguez EM, Oksche A, Hein S, Rodríguez S, Yulis CR (1984) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237:427–441

    PubMed  Google Scholar 

  • Rodríguez S, Rodríguez PA, Banse C, Rodríguez EM, Oksche A (1987) Reissner's fiber, massa caudalis, and ampulla caudalis in the spinal cord of lamprey larvae (Geotria australis). Lightmicroscopic immunocytochemical and lectin-histochemical studies. Cell Tissue Res 247:359–366

    Google Scholar 

  • Shibahara S, Morimoto Y, Furutani Y, Notake M, Takahashi H, Shimizu S, Horikawa S, Numa S (1983) Isolation and sequence analysis of the human corticotropin-releasing factor precursor gene. EMBO J 2:775–779

    PubMed  Google Scholar 

  • Sterba G, Naumann W (1966) Elektronenmikroskopische Untersuchungen über den Reissnerschen Faden und die Ependymzellen im Rückenmark vonLampetra planeri (Bloch). Z Zellforsch 72:516–524

    PubMed  Google Scholar 

  • Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antiperoxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    PubMed  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin andβ-endorphin. Science 213:1394–1397

    PubMed  Google Scholar 

  • Vigh B, Vigh-Teichmann, Aros B (1977) Special dendritic and axonal endings formed by the cerebrospinal fluid contacting neurons of the spinal cord. Cell Tissue Res 183:541–552

    PubMed  Google Scholar 

  • Yamada C, Owada K, Kobayashi H (1985) Colocalization of corticotropin-releasing factor/urotensin I and urotensin II in the caudal neurosecretory neurons in the carp,Cyprinus carpio. Zool Sci 2:813–816

    Google Scholar 

  • Yulis CR, Lederis K (1986a) Extraurophyseal distribution of urotensin II immunoreactive perikarya and their processes. Proc Natl Acad Sci USA 83:7079–7083

    Google Scholar 

  • Yulis CR, Lederis K (1986b) The distribution of “extraurophyseal” urotensin I-immunoreactivity in the central nervous system ofCatostomus commersoni after urophysectomy. Neurosci Lett 70:75–80

    PubMed  Google Scholar 

  • Yulis CR, Lederis K (1988a) Occurrence of an anterior spinal, cerebrospinal fluid-contacting, urotensin II neuronal system in various fish species. Gen Comp Endocrinol 79:301–311

    Google Scholar 

  • Yulis CR, Lederis K (1988b) Relationship between urotensin II-and somatostatin immunoreactive spinal cord neurons ofCatostomus commersoni andOncorhynchus kisutch. Cell Tissue Res 254:539–542

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Grant A/1095-1 from the International Foundation for Science, Sweden, to C.Y.; Grant I/63-476 from Volkswagen-Stiftung to E.R.; and Grant S-85-39 from the Dirección de Investigaciones, Universidad Austral de Chile

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yulis, C.R., Garcia, M.E. & Rodríguez, E.M. The caudal spinal cord of coho salmon (Oncorhynchus kisutch): Immunocytochemical evidence of a “caudal serotoninergic system”. Cell Tissue Res. 259, 543–550 (1990). https://doi.org/10.1007/BF01740782

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01740782

Key words

Navigation